
PHP 7.0 – Dynamische
Webseiten erstellen

Grundlagen

GPHP7

PHP 7.0 – Dynamische
Webseiten erstellen

Grundlagen

GPHP7

Stephan Heller

1. Ausgabe, Oktober 2016

ISBN 978-3-86249-621-1

Lizenziert für ComCave College GmbH

 I PHP 7.0 – Dynamische Webseiten erstellen

 2 © HERDT‐Verlag

Bevor Sie beginnen … 4

1 Informationen zu diesem Buch 5
1.1 Voraussetzungen und Ziele 5
1.2 Aufbau und Konventionen 6

2 Einführung in PHP 7
2.1 PHP‐Code in Webseiten 7
2.2 Informationen zu PHP 10
2.3 PHP‐Version 7.0 13

3 Grundlegende Sprachelemente 14
3.1 PHP in HTML einbinden 14
3.2 Codieren von PHP‐Skripten 17
3.3 Daten im Browser ausgeben 19
3.4 Grundlagen zur Fehlersuche in PHP‐Skripten 26
3.5 Übung 29

4 Variablen und Operatoren 30
4.1 Variablen 30
4.2 Variablen und Operatoren für Zahlen 32
4.3 Variablen und Operatoren für Zeichenketten 35
4.4 Konstanten 40
4.5 Übungen 44

5 Kontrollstrukturen 46
5.1 Kontrollstrukturen einsetzen 46
5.2 Die einfache if‐Anweisung 49
5.3 Die if‐Anweisung mit else‐Zweig 52
5.4 Erweiterte if‐Anweisung mit elseif 55
5.5 Verschachtelte if‐Anweisungen 56
5.6 Fallauswahl mit der switch‐Anweisung 58
5.7 Schleifen 62
5.8 Mit der while‐Schleife arbeiten 62
5.9 Mit der for‐Schleife arbeiten 64
5.10 Schleifen abbrechen 66
5.11 Übungen 68

6 Arrays 71
6.1 Grundlagen zu Arrays 71
6.2 Indizierte eindimensionale Arrays erstellen 73
6.3 Assoziative eindimensionale Arrays erstellen 74
6.4 Arrays mit der Kurzschreibweise erstellen 76
6.5 Mit eindimensionalen Arrays arbeiten 77
6.6 Daten aus eindimensionalen Arrays

extrahieren 79
6.7 Mehrdimensionale indizierte Arrays erstellen 81
6.8 Mit mehrdimensionalen assoziativen Arrays

arbeiten 83

6.9 Daten aus mehrdimensionalen Arrays

extrahieren 84
6.10 Den passenden Array‐Typ verwenden 87
6.11 Weitere Informationen zu Arrays in PHP 87
6.12 Übungen 89

7 Mit Formularen arbeiten 91
7.1 Interaktion mit PHP 91
7.2 Formulare mit PHP auswerten 94
7.3 Übungen 106

8 Funktionen 108
8.1 Funktionen erstellen und aufrufen 108
8.2 Mit Funktionen arbeiten 112
8.3 Der Gültigkeitsbereich von Variablen 123
8.4 PHP‐Dateien einbinden mit include()

und require() 126
8.5 Übungen 129

9 Mit Daten aus externen Dateien
arbeiten 131
9.1 Externe Dateien nutzen 131
9.2 Dateien öffnen, lesen und schließen 132
9.3 Weitere Möglichkeiten zum Lesen

von Dateien 136
9.4 In Dateien schreiben 139
9.5 Weitere Datei‐Funktionen 142
9.6 Zugriffszähler für eine Webseite 143
9.7 Übung 145

10 Zeichenketten‐Funktionen 146
10.1 Zeichenketten ausgeben 146
10.2 Zahlen formatieren 150
10.3 Nach Zeichenketten suchen 151
10.4 Position und Teil einer Zeichenkette ermitteln 154
10.5 Zählen innerhalb von Zeichenketten 156
10.6 Zeichenketten vergleichen 158
10.7 Zeichenketten modifizieren 158
10.8 Mit Arrays und Zeichenketten arbeiten 162
10.9 Übungen 165

11 Datum und Uhrzeit 167
11.1 Datum und Zeit ermitteln 167
11.2 Datum und Zeit formatieren 169
11.3 Datumsangabe an Sprache anpassen 172
11.4 Länder‐ und Spracheinstellungen ändern 173
11.5 Zeitfunktionen 175
11.6 Datumsangaben überprüfen 179
11.7 Übungen 181

Lizenziert für ComCave College GmbH

Inhalt I

 © HERDT‐Verlag 3

12 Sessions 183
12.1 Mit Sessions arbeiten 183
12.2 Session starten bzw. fortsetzen 185
12.3 Daten in einer Session speichern 186
12.4 Daten einer Session abrufen 189
12.5 Sessiondaten und Session löschen 191
12.6 Fallbeispiel „Shop“ 193
12.7 Übung 202

13 Grundlagen Datenbank MySQL 204
13.1 Die Datenbanken MySQL und MariaDB 204
13.2 MySQL‐Datenbanken mit phpMyAdmin

verwalten 204
13.3 MySQL‐Datenbanken mit phpMyAdmin

erstellen 207
13.4 Mit einer MySQL‐Tabelle arbeiten 211
13.5 SQL‐Dumps exportieren und importieren 212
13.6 PHP und MySQL 214
13.7 MySQL‐Abfragen 221
13.8 Rückgabe aus MySQL‐Abfrage auswerten 224
13.9 Formulardaten in einer MySQL‐Datenbank

speichern 227
13.10 Übung 228

A Installation und Konfiguration der
Software 230
A.1 Installation und Konfiguration von XAMPP 230
A.2 Mit XAMPP arbeiten 233
A.3 Installation und Konfiguration von

Notepad++ 235
A.4 Mit den XAMPP‐Konfigurationsdateien

arbeiten 237
A.5 Zugriffsrechte von MySQL mit phpMyAdmin

steuern 239
A.6 Globale Zugriffsrechte des MySQL‐

Administrators root ändern 240

Stichwortverzeichnis 242

Lizenziert für ComCave College GmbH

 Bevor Sie beginnen …

 4 © HERDT-Verlag

Bevor Sie beginnen …

 BuchPlus - unser Konzept:

Problemlos einsteigen - Effizient lernen - Zielgerichtet nachschlagen
(weitere Infos unter www.herdt.com/BuchPlus)

Nutzen Sie dabei unsere maßgeschneiderten, im Internet frei verfügbaren Medien:

 Rufen Sie im Browser die Internetadresse www.herdt.com auf.

1 Wählen Sie Codes.

2 Geben Sie den folgenden
Matchcode ein: GPHP7.

Lizenziert für ComCave College GmbH

Informationen zu diesem Buch 1

 © HERDT‐Verlag 5

1
1. Informationen zu diesem Buch

1.1 Voraussetzungen und Ziele

Zielgruppe

Das Buch richtet sich an Webentwickler, Studenten und Schüler, die fundiertes Grundwissen über
die dynamische Webentwicklung mit PHP erhalten möchten.

Empfohlene Vorkenntnisse

Um effektiv mit PHP arbeiten zu können, sind Kenntnisse in folgenden Bereichen vorteilhaft:

 Betriebssysteme

 Arbeiten mit Browsern

 HTML‐Grundlagen (mindestens Zeichen‐ und Absatzformatierung, Tabellen, Formulare)

 Grundkenntnisse Datenbanken (MariaDB/MySQL)

Lernziele

Das Buch führt Sie schrittweise in PHP ein. Sie lernen, wie PHP grundsätzlich funktioniert, erfahren,
wie grundlegende Sprachelemente aussehen und wie Sie PHP in HTML verwenden können. Sie
gewinnen Kenntnis darüber, welche Arten von Variablen es gibt, was Arrays sind und in welcher
Weise Sie mit Variablen arbeiten können. Sie lernen Kontrollstrukturen und Funktionen kennen,
welche die Grundbestandteile eines PHP‐Skriptes darstellen.

Die Grundlagen werden anhand verschiedener Anwendungsbeispiele erklärt und vertieft. So
lernen Sie z. B., wie Sie Eingaben aus HTML‐Formularen auslesen und weiter verarbeiten. Oder
wie Sie Zeichenketten (Wörter) oder Datumswerte ändern können. Sie erlernen beispielsweise
auch, wie Sie über Sessions PHP‐Skripten ein „Gedächtnis“ verleihen oder wie Sie die Verbindung
zu einer Datenbank herstellen.

Lizenziert für ComCave College GmbH

 1 Informationen zu diesem Buch

 6 © HERDT‐Verlag

Hinweise zu Soft‐ und Hardware

PHP ist eine Open‐Source‐Software. Sie benötigen zur Erstellung von Webseiten mit PHP‐
Anweisungen nicht mehr als einen Texteditor. Damit Sie Ihre PHP‐Programme direkt an Ihrem
Rechner testen können, empfehlen wir Ihnen folgende Software:

 die kostenfreie Entwicklungsumgebung XAMPP in der Version 7.0.5 vom 21. April 2016

(https://www.apachefriends.org/index.html) unter anderem mit den Bestandteilen:

 PHP, Version 7.0.5,

 Apache‐Webserver, Version 2.4.18,

 MariaDB 10.1.13;

Die XAMPP‐Software wurde in allen Beispielen für dieses Buch mit den
Standardeinstellungen verwendet. Installations‐ und Konfigurationshinweise zur Software
finden Sie im Anhang.

 den Freeware‐Texteditor Notepad++ in der Version 6.9.1 (http://notepad‐plus‐
plus.org/download/);

 einen Webbrowser.

In diesem Buch sind alle Screenshots mit dem Firefox‐Browser erstellt. Grundsätzlich spielt der
Browser für das Arbeiten mit PHP keine Rolle. Sie können ebenfalls Google Chrome, Microsoft
Internet Explorer, Apple Safari oder auch Opera verwenden.

1.2 Aufbau und Konventionen

Typografische Konventionen

Damit Sie bestimmte Elemente auf einen Blick erkennen und zuordnen können, werden diese im
Text durch eine besondere Schreibweise hervorgehoben. So werden beispielsweise Bezeichnungen
für Programmelemente wie Register oder Schaltflächen immer kursiv geschrieben und wichtige
Begriffe fett hervorgehoben.

Kursivschrift kennzeichnet alle von Programmen vorgegebenen Bezeichnungen für
Schaltflächen, Dialogfenster, Symbolleisten, Menüs bzw. Menüpunkte (z. B.
Datei ‐ Schließen) sowie alle vom Anwender zugewiesenen Namen wie
Dateinamen, Ordnernamen, eigene Symbolleisten, Hyperlinks und
Pfadnamen.

Courier New kennzeichnet Programmtext, Programmnamen, Funktionsnamen, Variablen‐
namen, Datentypen, Operatoren etc.

[] Bei Darstellungen der Syntax einer Programmiersprache kennzeichnen eckige
Klammern optionale Angaben.

/ Bei Darstellungen der Syntax einer Programmiersprache werden alternative Ele‐
mente durch einen Schrägstrich voneinander getrennt.

Weitere Medien von HERDT nutzen

Hat Ihnen das vorliegende Buch gefallen, besuchen Sie doch einmal unseren Webshop unter
www.herdt.com. Wir wünschen Ihnen viel Spaß und Erfolg mit diesem Buch.

Ihr Redaktionsteam des HERDT‐Verlags

Lizenziert für ComCave College GmbH

Einführung in PHP 2

 © HERDT‐Verlag 7

2
2. Einführung in PHP

Beispieldateien: Dateien aus Ordner Kap02

2.1 PHP‐Code in Webseiten

Was ist PHP?

PHP (Abkürzung für PHP: Hypertext Preprocessor, früher auch Personal Home Page Tools) ist eine
Open‐ Source‐Skriptsprache, die speziell für den Einsatz im Internet entwickelt wurde.

Die Stärken von PHP liegen in der recht leichten Erlernbarkeit und in der breiten Funktionspalette.

PHP setzt dort an, wo HTML seine Grenzen erreicht: HTML‐Seiten sind starr. Mithilfe von PHP
können auf einer Webseite

 Interaktionen eingebaut,

 Datenbanken gesteuert oder

 die Seite individuell an das Benutzerverhalten angepasst werden.

Webseiten mit PHP‐Code verarbeiten

PHP‐Code wird von einem Webserver,
also serverseitig verarbeitet. Das
Ergebnis wird danach vom Webserver
als HTML‐Code (Quellcode) an den
Browser gesendet. Ob der HTML‐Code
aus einer statischen HTML‐Datei
stammt oder das Ergebnis eines
ausgeführten PHP‐Skripts ist, ist für
den Browser nicht ersichtlich. Zur
Darstellung erhält der Browser in
beiden Fällen HTML‐Code.

Öffnet der Betrachter eine PHP‐
Webseite im Browser ,

 werden die Anweisungen
von PHP auf dem Server 
interpretiert ,











Lizenziert für ComCave College GmbH

 2 Einführung in PHP

 8 © HERDT‐Verlag

 ausgeführt  und

 das Ergebnis als HTML‐Code an den Browser zurückgesendet .

Der Nutzer sieht im Browser nur die Darstellung des zurück gelieferten HTML‐Codes (Resultat nach
den Vorgängen  und ). Der PHP‐Quellcode selbst ist dem Betrachter nicht zugänglich.
Programmieralgorithmen, die Verarbeitung von Daten oder beispielsweise Zugriffe auf Daten‐
banken bleiben dem Nutzer verborgen.

Webseite ohne PHP‐Code – Beispiel: html‐inhalt.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>HTML-Webseite</title>
 </head>
 <body>
 <p>Dies ist ein Textbaustein in einer HTML-Seite.</p>
 </body>
</html>

HTML‐Dateien können ohne weitere Software
von jedem beliebigen Browser angezeigt
werden. Es reicht ein Doppelklick auf den
Dateinamen, um die Datei zu öffnen. In der
Adresszeile des Browsers erscheint der Pfad
des Dateisystems, in dem die HTML‐Datei
liegt.

Webseite um PHP‐Code erweitern

 Schritt 1: Kopieren Sie die Datei html‐inhalt.html und ändern Sie den Dateinamen in html‐
inhalt‐und‐php.php.

Achten Sie auf die Angabe der Dateinamenerweiterung php. Sobald die Dateinamen‐
erweiterung von html in php geändert ist, haben Sie eine lauffähige PHP‐Datei erzeugt.

PHP‐Dateien benötigen im Gegensatz zu HTML‐Dateien einen Webserver, der PHP ver‐
arbeitet (interpretiert). Webserver werden von Internet‐Providern zur Verfügung gestellt.
Mit dem XAMPP‐Paket (vgl. Abschnitt A.1) können Sie einen lokalen Webserver für die
Entwicklung von PHP auf Ihrem eigenen Rechner installieren.

Die Ausgabe der Datei html‐inhalt‐und‐php.php ist identisch mit der Datei html‐inhalt.html.
Beide Dateien enthalten den gleichen HTML‐Code und sonst keine weiteren Inhalte. HTML‐
Code wird vom PHP‐Interpreter weder interpretiert noch ausgeführt, sondern direkt an den
Browser gesendet und dort dargestellt.

Über PHP‐Code soll zusätzlich der Text Ich freue mich auf PHP! ausgegeben werden:

 Schritt 2: Öffnen Sie die Datei html‐inhalt‐und‐php.php im Editor (z. B. Notepad++) und

fügen Sie PHP‐Code in den HTML‐Code ein:

Lizenziert für ComCave College GmbH

Einführung in PHP 2

 © HERDT‐Verlag 9

Beispiel: html‐inhalt‐und‐php.php

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>HTML-Webseite mit PHP</title>
 </head>
 <body>

 <p>Dies ist ein Textbaustein in einer HTML-Seite.

 <?php

 echo "Ich freue mich auf PHP!";

 ?>
 </p>
 </body>
</html>

 Fügen Sie hinter dem vorhandenen Text einen Zeilenumbruch
  ein, um die
Ausgabe, die vom HTML‐ und PHP‐Code erzeugt wird, in zwei Zeilen zu bewirken.

 Beginnen Sie einen PHP‐Block im HTML‐Code mit dem öffnenden PHP‐Tag <?php .

 Verwenden Sie zur Ausgabe des Textes den PHP‐Befehl echo, gefolgt vom Text in
Anführungszeichen. Befehle werden in PHP durch ein Semikolon abgeschlossen.

 Beenden Sie den PHP‐Block mit einem schließenden PHP‐Tag ?> .

PHP‐Code kann an jeder beliebigen Stelle und beliebig oft im HTML eingefügt werden. Wichtig

ist, dass jeder PHP‐Block von dem öffnenden PHP‐Tag <?php und dem schließendem PHP‐Tag?>
umschlossen ist.

 Schritt 3: Starten Sie den XAMPP‐Webserver über das Control Panel, falls dieser nicht als

Dienst installiert ist (vgl. Installationshinweise Abschnitt A.1). Rufen Sie die PHP‐Datei im
Browser mit folgender URL auf: http://localhost/[Pfad zur Datei]/html‐inhalt‐und‐php.php.

Falls Sie die Datei html‐inhalt‐und‐php.php direkt im Ordner /htdocs des Webservers
gespeichert haben, lautet der Aufruf im Browser http://localhost/html‐inhalt‐und‐php.php.
Haben Sie die Datei in einem Unterordner abgelegt, müssen Sie [Pfad zur Datei] durch den
Namen Ihrer Ordner ersetzen (vgl. Kapitel 3).

Die nebenstehende Abbildung zeigt die
Webseite „html‐inhalt‐und‐php.php“ im
Browser.

Lizenziert für ComCave College GmbH

 2 Einführung in PHP

 10 © HERDT‐Verlag

Den vom Server zurückgelieferten
HTML‐Code sehen Sie in
nebenstehender Abbildung.

Die PHP‐Anweisungen wurden durch
den auszugebenden Inhalt ersetzt.
Der Betrachter sieht den ursprüng‐
lichen PHP‐Code im HTML‐Code nicht.

Merkmale von PHP

 PHP wurde speziell für die Programmierung dynamischer Webseiten entwickelt. Funktionen
in PHP sind deshalb auf die Programmierung von Internetanwendungen abgestimmt.

 PHP zeichnet sich durch einen großen Funktionsumfang aus.

 PHP ist plattformunabhängig. Webserver mit PHP‐Unterstützung stehen sowohl für Linux,
Mac OS und Windows zur Verfügung.

 Die PHP‐Anweisungen werden direkt auf dem Server ausgeführt und nicht vom Browser
(Client).

 Der PHP‐Quellcode ist für den Betrachter nicht sichtbar, sondern nur die auf dem Webserver
generierte HTML‐Ergebnisdatei.

 PHP ist fehlertoleranter als andere Programmiersprachen wie beispielsweise JAVA.

 PHP ist kostenlos erhältlich.

2.2 Informationen zu PHP

Entwicklung von PHP

1994 begann Rasmus Lerdorf mit der Entwicklung einer Skriptsprache für das Internet. Die Sprache
sollte einfach zu erlernen sein. Die erste Version nannte er PHP, abgeleitet von „Personal Home
Page Tools“, einer Sammlung von diversen Skripten zum Einbinden in Webseiten. Der Interpreter
beherrschte wenige Befehle, sodass der Funktionsumfang klein war.

Ein Jahr später erweiterte Lerdorf den Funktionsumfang, indem er den Interpreter neu program‐

mierte. Hinzu kamen die Funktionen des vorhandenen Formular Interpreters, kurz FI.
Dieser Interpreter war in der Lage, Formulardaten ohne CGI (Common Gateway Interface) zu

verarbeiten. Die Kombination der Home Page Tools und des Formular Interpreters (PHP2)
nannte er PHP/FI. Das Neue an dieser Version war die Anbindung an die MySQL‐Datenbank.

Das Privatprojekt Lerdorfs wurde 1997 von einem Team von Programmierern übernommen. Mit
dabei Andi Gutmans und Zeev Suraski, die Gründer der Firma Zend Technologies Ltd. Die Funktionen
der PHP/FI‐Version wurden in das PHP3‐Format portiert und neue Befehle hinzugefügt.
Mit der Version PHP3 und ihrer Anbindung an verschiedenste Datenbanken begann die Verbreitung
der Skriptsprache zur dynamischen Seitengenerierung. Konkurrenzprodukte sind andere server‐
seitige Programmiersprachen wie ASP.NET, Java Server Pages (JSP) oder ColdFusion.

Lizenziert für ComCave College GmbH

Einführung in PHP 2

 © HERDT‐Verlag 11

Seit PHP4 bildet ein von Zend entwickelter Compiler zur schnelle(re)n Ausführung des Codes,
die sogenannte „Zend Engine“, das Rückgrat der PHP‐Programmierung. PHP wurde durch
Erweiterungen seines Funktionsumfangs, wie z. B. das Sessionmanagement, verbessert.

PHP‐Versionen und ‐Verbreitung

PHP5 ist seit Sommer 2004 auf dem Markt. Eine stark verbesserte Zend Engine II ist ebenso wie
zahlreiche Verbesserungen, z. B. in der objektorientierten Programmierung und in Fragen rund um
die Sicherheit der Programmierung, dafür verantwortlich, dass die Zahl der Webseiten mit PHP‐
Unterstützung schnell wächst.

Bereits ein Jahr, nachdem PHP 5 veröffentlich wurde, wurde 2005 mit der Entwicklung von PHP 6
begonnen. Unter anderem sollte eine native Unicode‐Unterstützung implementiert werden. Die
Entwicklung von PHP 6 wurde mittlerweile eingestellt.

2014 wurde mit der Entwicklung einer neuen Hauptversion von PHP begonnen. Da die Entwicklung
von PHP 6 als gescheitert bezeichnet werden kann, haben sich die Entwickler entschieden, die 6er
Version einfach zu überspringen und die neue PHP‐Version PHP 7 zu nennen. Damit ist PHP 7 die
direkte Nachfolgeversion von PHP 5.6.

Internet‐Provider setzen in der Regel nur stabile Versionen von PHP ein. In 2015 und 2016
haben die meisten Provider auf PHP 5.6 umgestellt, PHP 5.4 haben die meisten Anbieter derweil
abgeschaltet. PHP 7 ist bereits bei den meisten großen deutschen Providern verfügbar,
zumindest in einer Testversion. Bevor Sie neue PHP‐Features von PHP 7 verwenden wollen,
prüfen Sie vorher, welche PHP‐Version Ihr Provider anbietet.

Mittlerweile laufen über 244 Mio. Websites auf Webservern mit PHP‐Unterstützung. PHP wird auf
82% aller Webseiten eingesetzt (Stand: Ende 2015, Quelle: http://de.wikipedia.org/wiki/
PHP#Verbreitung) und ist damit die am häufigsten verwendete Programmiersprache zum Erstellen
von Webseiten.

Funktionsumfang von PHP

PHP hat heute einen großen Funktionsumfang, mit dem weitestgehend alle gängigen Anforde‐
rungen im Webumfeld gelöst werden können. Eine Auswahl oft benötigter Funktionen finden Sie
nachfolgend:

 HTML‐Seiten generieren, in denen benutzerbezogene Daten verarbeitet sind.

 Verarbeiten unterschiedlicher Datentypen, wie Integer, Fließkommazahlen, Zeichenketten
oder Arrays.

 Auslesen, Überprüfung und Verarbeiten von Formulardaten.

 Daten aus Datenbanken auslesen, bearbeiten und wieder in Datenbanken speichern.

 Zeichenketten auslesen, verändern, abschneiden, umwandeln, in bestimmten Formaten
wieder ausgeben.

 Datums‐ und Zeitangaben auslesen, erkennen, generieren, verändern.

 E‐Mails erstellen und versenden.

 Grafiken öffnen oder generieren, verändern, speichern.

Lizenziert für ComCave College GmbH

 2 Einführung in PHP

 12 © HERDT‐Verlag

 Dateien (z. B. Text‐ oder CSV‐Dateien) öffnen, auslesen, verändern, speichern.

 Über Schnittstellen Dienste anderer Webseiten aufrufen, einlesen, auswerten.

 Cookies speichern und auslesen, Sessions verwalten.

Über die Kernfunktionalitäten ist PHP zusätzlich um verschiedenste Bibliotheken erweiterbar,
beispielsweise ImageMagick. Die Bibliothek ImageMagick bietet mehr Funktionalitäten als PHP‐
eigene Funktionen zur Bildverarbeitung.

Im Rahmen der Grundlagen von PHP 7.0 werden die Basisfunktionalitäten von PHP gezeigt, die
ausreichend sind, um eine dynamische Webseite zu programmieren.

Die Kombination von PHP und der Datenbank MySQL bzw. MariaDB ist auf der Mehrzahl aller
Webserver zu finden. PHP ist jedoch nicht auf MySQL beschränkt, sondern kann mit unterschied‐
lichen Datenbanken arbeiten – entweder direkt über eigene PHP‐Funktionalitäten oder auch über
ODBC‐Schnittstellen. So kann PHP beispielsweise auch mit Oracle Datenbanken arbeiten.

PHP unterstützt darüber hinaus die Kommunikation mit anderen Services, z. B. Protokollen wie
LDAP, IMAP, SNMP, NNTP, POP3 oder HTTP.

Zudem ist PHP zur Kommandozeilenprogrammierung (z. B. für sogenannte „cronjob“‐Skripte, die
wiederkehrende Aufgaben automatisieren) oder für die Entwicklung von Desktop‐Anwendungen
einsetzbar.

Informationen zu PHP im Internet

Folgende ausgewählte Webseiten bieten ausführliche Informationen zu PHP:

 http://www.php.net Die wichtigste Seite für PHP‐Programmierer. Hier
finden Sie die komplette Dokumentation von PHP, alle
Funktionen einschließlich PHP‐Code‐Beispielen und
PHP‐Versionshinweise. Auch Probleme mit Funktionen
werden dort besprochen.

 http://www.php.net/manual/de/ Deutschsprachiges Onlinehandbuch der PHP‐
Dokumentationsgruppe

 http://www.selfphp.de Befehlsreferenz ‐ Tutorial ‐ Kochbuch ‐ Forum: für PHP‐
Einsteiger und professionelle Entwickler. Eine aktuelle
und vollständige Version steht auch zum Download
bereit: http://www.selfphp.de/de/extras/download.php

 http://www.w3schools.com/php/ Die Webseite von W3Schools bietet umfangreiche
Tutorials zu PHP und allen weiteren Webtechniken wie
HTML und CSS. Die Seite ist gut strukturiert aufgebaut,
die Erklärungen sind ergänzt durch viele hilfreiche
Beispiele.

 http://wiki.selfhtml.org SELFTHTML‐Wiki ist das Nachfolgeprojekt von
SELFHTML und berücksichtigt bereits HTML5‐Elemente.

Lizenziert für ComCave College GmbH

Einführung in PHP 2

 © HERDT‐Verlag 13

http://www.php.net ist die Standardreferenz für PHP‐Entwickler. Große Teile der Referenz
stehen in Deutsch zur Verfügung. Gerade bei neueren Features lohnt sich aber der Wechsel in
die englische Variante, da diese mitunter auf einem aktuelleren Stand ist.

2.3 PHP‐Version 7.0

Auch wenn der Sprung von PHP 5 nach PHP 7 groß klingt, ist das Ausmaß der Änderungen für
PHP‐Entwickler vergleichbar zu den Änderungen von PHP 5.5 nach 5.6. Viele der Neuerungen von
PHP 7.0 sind für das Erlernen der Grundlagen von PHP nicht relevant. Im Wesentlichen hat sich
PHP „unter der Haube“ verändert. Es wurde durch die komplette Neuentwicklung des PHP‐Kerns
vor allem an der Geschwindigkeit von PHP gearbeitet.

Relevante Neuerungen für dieses Buch sind die Spaceship‐ und Null coalescing‐Operatoren
(vgl. Kapitel 5) und die Datentyp‐Definition für Funktionen und für Funktionsrückgabeparameter
(vgl. Kapitel 8).

Die wichtigsten Änderungen in PHP 7.0 sind nachfolgend aufgeführt:

Neuerungen und Änderungen von PHP 7

 Spaceship‐Operator: <=> (Vergleichs‐ und Zuweisungsoperator in einem)

 Null coalescing‐Operator ?? (optionale Wertzuweisung)

 Erweiterung der Datentyp‐Definition für Funktionen um skalare Datentypen

 Datentyp‐Definition für Funktionsrückgabeparameter

 Die neue Funktion intdiv() liefert den ganzzahligen Quotienten einer Division.

 Die Reihenfolge der Parameter für list() wurde verändert.

 Anonyme Klassen sind jetzt möglich.

 Erweiterung der Fehlerbehandlung bzw. Exception‐Handling mit dem Throwable Interface

 Gruppierung von Namespaces per use

 Wegfall der PHP‐Einbindung über ASP‐ und Script‐Schreibweise

 Wegfall von Magic Quotes

 Error‐Levels E_STRICT ist jetzt Teil von E_ALL.

 Entfernung der Datenbankerweiterungen mysql und mssql

 Wegfall der Funktion ereg() zur Suche mit regulären Ausdrücken

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 14 © HERDT‐Verlag

3
3. Grundlegende Sprachelemente

Beispieldateien: Dateien aus Ordner Kap03

3.1 PHP in HTML einbinden

Dateiendung für PHP‐Dateien

PHP kann direkt in den HTML‐Code eingefügt werden. Damit der Webserver erkennt, dass es sich
um eine Datei mit PHP‐Anweisung(en) handelt, werden die Dokumente mit der Dateiendung
(Dateinamenerweiterung) *.php versehen. Die Dateiendung *.php ist für den Webserver das Signal,
den PHP‐Interpreter aufzurufen, dieser führt dann die PHP‐Datei aus und liefert das Ergebnis, also
das generierte HTML an den Browser aus.

*.php4, *.php5 oder *.phtml sind ebenfalls mögliche Endungen für PHP‐Dateien, empfohlen wird
jedoch die Dateinamenerweiterung *.php. Dies ist die gängige Schreibweise und entspricht der
Standardkonfiguration. Mit welchen Dateiendungen der Webserver Dateien als PHP‐Dateien
erkennt, kann in der Datei httpd.conf bzw. bei der XAMPP‐Software in der Datei httpd‐xampp.conf
konfiguriert werden.

In normalen HTML‐Dateien (Dateiendung *.htm bzw. *.html) werden PHP‐Anweisungen nicht
interpretiert.

PHP‐Anweisungen einfügen

PHP‐Code kann und darf an jeder beliebigen Stelle im HTML vorkommen. PHP‐Anweisungen

können Sie sowohl vor dem einleitenden HTML‐Tag <!DOCTYPE html> einfügen, aber auch im

<head> oder im <body> des HTML‐Quelltextes, je nachdem, wo Sie den PHP‐Code benötigen.

<?php
 PHP-Anweisung(en)
?>

XML‐konforme Standardschreibweise

Ein sogenannter PHP‐Block wird durch das Tag <?php geöffnet
und nach den PHP‐Anweisungen mit dem Tag ?> geschlossen.

Diese XML‐konforme Schreibweise ist sowohl die empfohlene
als auch gängige Art, PHP‐Blöcke auszuzeichnen.

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 15

PHP‐Code wird als PHP‐Block in das HTML eingefügt. Ein PHP‐Block wird mit einem öffnenden

PHP‐Tag <?php eingeleitet und durch ein schließendes PHP‐Tag ?> beendet, die PHP‐Befehle
schreiben Sie innerhalb dieser PHP‐Tags. Der PHP‐Interpreter erkennt anhand dieser Tags die
PHP‐Blöcke und führt den PHP‐Code darin aus.

In einer HTML‐Datei können beliebig viele PHP‐Blöcke vorkommen. Auch innerhalb einer Zeile im
HTML können mehrere PHP‐Blöcke eingefügt werden.

Alternative PHP‐Tags

<?
 PHP-Anweisung(en)
?>

Kurzschreibweise

Falls die Konfigurationsvariable short_open_tag in der
Datei php.ini auf den Wert On gesetzt wurde, können Sie
php im öffnenden PHP‐Tag weglassen.

Alternativ zur Standardschreibweise können Sie auch PHP‐Tags in der Kurzschreibweise <? … ?>
verwenden, in der das php im öffnenden PHP‐Tag entfällt. Gerade bei vielen PHP‐Blöcken spart
das Tipparbeit.

Allerdings müssen Sie die Kurzschreibweise zuvor in der php.ini aktivieren, was auf dem eigenen
Rechner für die Entwicklung möglich ist. Das Aktivieren an sich stellt das geringere Problem dar. Das
eigentliche Problem liegt darin, dass Ihr PHP‐Skript später auf einem Webserver eines professio‐
nellen Providers laufen soll. Dort haben Sie jedoch keinen Zugriff auf die Konfigurationsdatei php.ini
und können die Kurzschreibweise nicht aktivieren. Auch wenn Ihr PHP‐Code während der Entwick‐
lung funktioniert hat, läuft er später auf dem gemieteten Webserver nicht.

Vor PHP 7.0 gab es zwei weitere Schreibweisen, um PHP‐Blöcke im HTML einzufügen. Zum einen

die ASP‐Schreibweise <% … %> zum anderen die Skript‐Schreibweise <script
language="php"> … </script>. Auch in älteren PHP‐Versionen waren beide Schreib‐
weisen nicht gängig, funktionierten aber, wenn diese entsprechend in der php.ini konfiguriert
waren. Mit PHP 7.0 ist diese Syntax weggefallen und würde zum Fehler führen, wenn Sie diese Art
der PHP‐Einbindung verwenden würden.

Verwenden Sie nach Möglichkeit die allgemeingültige XML‐Schreibweise (<?php … ?>) zum
Einfügen von PHP‐Anweisungen in Ihren Skripten. Dies ist die gängige Einstellung der Webserver
von Internet‐Providern. Damit stellen Sie sicher, dass Ihre Seite auf allen Servern läuft.

Informationsdatei zur PHP‐Konfiguration anzeigen

Sie können sich mit einem Skript die PHP‐Konfiguration des Servers anzeigen lassen, auf dem dieses

Skript ausgeführt wird. Zu diesem Zweck stellt PHP die Funktion phpinfo() bereit. Damit erhal‐
ten Sie detaillierte Informationen zur installierten PHP‐Version samt installierten Erweiterungen.

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 16 © HERDT‐Verlag

Wenn Sie mit dem empfohlenen XAMPP‐Paket arbeiten, rufen Sie im Webbrowser Ihren lokalen
Rechner als (PHP‐)Webserver auf. Über die Adresse http://localhost – oder alternativ über die IP‐
Adresse http://127.0.0.1 – wird automatisch das im Webserver definierte sogenannte document
root‐Verzeichnis geöffnet. Bei einer XAMPP‐Standardinstallation ist das unter Windows der
Ordner C:\xampp\htdocs. Unter Mac OS finden Sie das root‐Verzeichnis unter
/Applications/XAMPP/xamppfiles/htdocs.

Beispiel: phpinfo.php

 Erstellen Sie folgende Datei und speichern Sie sie im Verzeichnis C:\xampp\htdocs unter dem
Dateinamen phpinfo.php.

 Um das Skript zu testen, rufen Sie im Browser die PHP‐Datei mit folgender Adressangabe
auf Ihrem lokalen Webserver auf:

http://localhost/phpinfo.php oder http://127.0.0.1/phpinfo.php

<?php
 phpinfo();
?>

Beispieldatei „phpinfo.php“

Ausschnitt aus der Anzeige der PHP‐Konfiguration

In der Kopfzeile der Seite wird Ihnen die installierte PHP‐Version angezeigt. Auf der Seite selber
erscheinen dann diverse Informationen zur PHP‐Installation, unter anderem Pfade zu
Konfigurationsdateien, Umgebungsvariablen oder installierte Pakete.

PHP‐Dateien können nicht mit einem Doppelklick auf die Datei geöffnet werden. Sie können
die Datei zwar mit der Maus in den Browser ziehen, dann wird diese jedoch lediglich als
HTML‐Datei dargestellt, PHP‐Anweisungen werden dann nicht interpretiert. Damit der PHP‐
Code ausgewertet wird, muss der Aufruf der PHP‐Datei über einen PHP‐Interpreter erfolgen,
in den Beispielen in diesem Buch immer über die Serveradresse http://localhost oder
http://127.0.0.1 und anschließend jeweils Pfad‐ und Dateiname.

Installierte PHP-Version

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 17

3.2 Codieren von PHP‐Skripten

PHP‐Skripte können aus Hunderten von Codezeilen bestehen. Oft ist es sinnvoll, Codezeilen
mehrfach zu verwenden. Achten Sie deshalb darauf, dass Ihr Code

 leicht zu lesen und zu verstehen ist,

 gut kommentiert bzw. dokumentiert ist,

 auch von anderen Programmierern leicht zu verstehen und damit einfach zu pflegen ist,

 selbsterklärende Variablen und Funktionsnamen berücksichtigt,

 keine kryptischen Bezeichner enthält.

Nachfolgend finden Sie einige Tipps, wie Sie Ihre PHP‐Skripte verständlich und übersichtlich
gestalten können.

PHP‐Anweisungen zeilenweise schreiben

Jede PHP‐Anweisung wird durch ein Semikolon beendet. Daran erkennt der PHP‐Interpreter das
Ende der einen und den Anfang der nächsten Anweisung. Schreiben Sie zur besseren Übersicht jede
PHP‐Anweisung in eine eigene Zeile und verwenden Sie Einrückungen, um den Code übersichtlicher
zu gestalten. (PHP selber benötigt keine Zeilenumbrüche, ein PHP‐Skript mit mehreren
Anweisungen, die per Semikolon getrennt sind, könnte auch in einer einzelnen Zeile stehen.)

Beispiel

<?php
 PHP-Anweisung;
 PHP-Anweisung;
?>

Skripte gut kommentieren

Um Quellcode zu erläutern, werden Kommentare verwendet:

 Kommentare erhöhen die Nachvollziehbarkeit der Programmierung.

 Kommentare enthalten z. B. eine Kurzbeschreibung der Verwendung einer Funktion.

 Kommentare beschreiben den Zweck von Variablen oder erklären den Algorithmus eines
Programms.

Gute Kommentare beschreiben, was nicht im PHP‐Code steht, z. B. welcher Ansatz für eine
Berechnung verwendet wurde oder den Link zu einer verwendeten Bibliothek. Beim Kommentieren
sollten Sie immer die Frage „Was bräuchten die Kollegen, um diesen Code weiter entwickeln zu
können“ im Kopf haben.

Kommentare können auch genutzt werden, um einen Abschnitt des PHP‐Codes – für Testzwecke
oder um Fehler einzugrenzen – als Kommentar zu kennzeichnen und damit vor dem PHP‐
Interpreter zu verstecken (dies wird als „auskommentieren“ bezeichnet), sodass dieser Abschnitt
vorerst nicht ausgeführt wird.

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 18 © HERDT-Verlag

PHP-Kommentare sind für den Betrachter nicht zu sehen, auch nicht im HTML-Quelltext im
Browser. Die Kommentare werden beim Auswerten des PHP-Codes auf dem Webserver ignoriert
und nicht ausgegeben.

Syntax und Bedeutung der Kommentare
Beispiel: kommentar.php

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Kommentare in PHP</title>
 </head>
 <body>
 <?php

 echo "<p>PHP lernen: "; // einzeiliger Kommentar

 // einzeiliger Kommentar (komplette Zeile)

 # einzeiliger Kommentar per Raute

 /*
 mehrzeilige Kommentare werden häufig verwendet,
 um den Quellcode ausführlicher zu beschreiben

 */
 echo "Ich bin dabei!</p>";
 ?>
 </body>
</html>

+ Einzeilige Kommentare beginnen mit den Zeichen H H und benötigen kein abschließen-

des Zeichen, um dem PHP-Interpreter zu signalisieren, dass der Kommentar beendet ist.
Der Zeilenumbruch im PHP-Skript beendet diesen Kommentar. Sie werden dazu
verwendet, Erläuterungen  direkt hinter einem Befehl zu notieren oder auch  eine
gesamte Zeile als Kommentar zu kennzeichnen.

 Auch das Raute-Zeichen # kann für einzeilige Kommentare verwendet werden. Zwischen H H und # besteht für PHP kein Unterschied.
+ Mit den Zeichen H 8 werden mehrzeilige Kommentare eingeleitet  (sogenannte

Kommentarblöcke). Sie ermöglichen eine ausführliche Erklärung des Quellcodes. Mit den
Zeichen 8 H werden diese Kommentare beendet .

Kommentare im PHP-Code sind bei der Ausgabe im
Browser herausgefiltert…

…auch im HTML-Quelltext sind keine PHP-
Kommentare zu finden.

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 19

3.3 Daten im Browser ausgeben

Der Befehl echo
PHP ist eine Programmiersprache, die auf dem Webserver ausgeführt wird. Das Ergebnis einer
Berechnung kann z. B. in einer Variablen gespeichert werden. Die Ausführung von PHP‐Befehlen
führen nicht zwangsläufig zu einer Ausgabe im Browser oder zu generiertem HTML‐Quelltext.

PHP kann jedoch Ausgaben erzeugen. Zeichen und mehrere Zeichen hintereinander (sogenannte

Zeichenketten) werden über den Befehl echo in die HTML‐Ergebnisdatei geschrieben und damit
auf dem Bildschirm ausgegeben.

Syntax der echo‐Anweisung

echo "<p>PHP ist praktisch und einfach zu erlernen!</p>";

Anzeige der Beispieldatei „echo.php“

Umgang mit HTML‐Syntax bei der Ausgabe

Die echo‐Anweisung kann auch HTML‐Tags enthalten.

 Schreiben Sie beliebige HTML‐Tags einfach in die Anführungszeichen des Befehls echo.

Zeichenketten in Anführungszeichen – und dazu zählen auch HTML‐Tags – werden an den
Browser übergeben und vom Browser als normaler HTML‐Code dargestellt.

Beispiel: html1.php

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>HTML-Syntax</title>
 </head>
 <body>
 <?php
 echo "<p>Für den Anfang:
";
 echo "Hallo, dies sind erste
 Gehversuche!</p>";
 ?>
 </body>
</html>

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 20 © HERDT‐Verlag

Ausgabe der Beispieldatei „html1.php“

Beispiel: html2.php

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>HTML-Syntax</title>
 </head>
 <body>
 <?php
 echo '<p>Für den Anfang:
';
 echo 'Hallo, dies sind erste
 Gehversuche!</p>';
 ?>
 </body>
</html>

Der Quelltext html2.php ist fast der gleiche wie im Beispiel html1.php. Er unterscheidet sich da‐
durch, dass hier die Zeichenketten mit einfachen Anführungszeichen (Hochkommata) umschlossen
sind. Beide Schreibweisen sind gültig, beide PHP‐Skripte erzeugen die gleiche Ausgabe.

Der Unterschied von Zeichenketten in einfachen und doppelten Anführungszeichen ist relevant
für den PHP‐Interpreter und wie er mit diesen umgeht. Zeichenketten in doppelten Anführungs‐
zeichen werden geparst (ausgewertet), sprich: der PHP‐Interpreter „schaut“ in die Zeichenkette
rein, findet er PHP‐Variablen oder Steuerungszeichen, werden diese interpretiert.

Zeichenketten in einfachen Anführungszeichen werden hingegen nicht ausgewertet. Variablen
und Steuerungszeichen werden nicht interpretiert und als solche ausgegeben (Im Browser

erscheint z.b. $zahl statt dem Wert, welchen die Variable hat). Da das Parsen von
Zeichenketten in einfachen Anführungszeichen wegfällt, wird diese Variante von PHP schneller
verarbeitet.

Welche Variante Sie einsetzen, hängt davon ab, ob Sie Variablen innerhalb von Zeichenketten
verwenden, die von PHP ausgewertet werden sollen. In dem Fall verwenden Sie doppelte
Anführungszeichen. HTML‐Code selber gilt als normaler Text und wird so ausgegeben, wie er in der
Zeichenkette steht, dieser muss nicht geparst werden und kann von daher in einfachen
Anführungszeichen stehen.

Lizenziert für ComCave College GmbH

 Grundlegende Sprachelemente 3

 © HERDT-Verlag 21

Fehler durch Anführungszeichen
Sind innerhalb einer Zeichenkette in doppelten Anführungszeichen weitere doppelte Anführungs-
zeichen enthalten, beendet das erste doppelte Anführungszeichen innerhalb der Zeichenkette
die Zeichenkette. Danach erwartet PHP weiteren PHP-Code, findet jedoch den Rest der Zeichen-
kette, was zu einem Fehler führt. Das gleiche gilt entsprechend für den Einsatz von einfachen
Anführungszeichen.

Einen häufigen Fehler sehen Sie im folgenden – FALSCHEN – Beispiel:

echo "Der "Eiffelturm" ist das Wahrzeichen von Paris."; //FALSCH!

Das Beispiel funktioniert nicht wie erwartet. Die Zeichenkette wird durch das Anführungszeichen
vor dem Wort Eiffelturm beendet. Danach folgt bis zum Zeilenende normaler Text, den PHP nicht
auswerten kann. Sie erhalten eine Fehlermeldung, die Sie auf einen Syntaxfehler aufmerksam
macht.

Anführungszeichen ausgeben
Um dem Problem der Anführungszeichen zu begegnen, sieht PHP sogenannte Escape-Sequenzen
vor. Das wichtigste Escape-Zeichen ist der Backslash J. Dieser entwertet Zeichen, die für die
PHP-Syntax relevant sind:

Beispiel: sonderzeichen1.php
echo "<p>Der \"Eiffelturm\" ist das Wahrzeichen von Paris.</p>";
echo "<p>Der 'Eiffelturm' ist das Wahrzeichen von Paris.</p>";
echo '<p>Der \'Eiffelturm\' ist das Wahrzeichen von Paris.</p>';
echo '<p>Der "Eiffelturm" ist das Wahrzeichen von Paris.</p>';

Escape-Sequenzen sind Zeichen-
kombinationen für Sonderzeichen, z. B.
Anführungszeichen, Steuerzeichen oder
Zeilenumbruch. Im obigen Beispiel verliert
das Anführungszeichen durch den vor-
angestellten Backslash J seine Funktion
alsBegrenzer der Zeichenkette. Es wird nur
das Anführungszeichen selbst übergeben
und im Ergebnis dargestellt. Die neben-
stehende Abbildung zeigt die Ausgabe der
Datei sonderzeichen1.php.

Dieses Anführungszeichen innerhalb der Zeichenkette beendet die Zeichenkette.

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 22 © HERDT‐Verlag

Beispiele für Escape‐Sequenzen sind:

Escape‐Sequenz Ergebnis in der Zeichenkette Hinweis

\" " Nur relevant, wenn die Zeichenkette von
doppelten Anführungszeichen umschlossen ist.

\' ' Nur relevant, wenn die Zeichenkette von ein‐
fachen Anführungszeichen umschlossen ist.

\\ \ Nur relevant, wenn die Zeichenkette von
doppelten Anführungszeichen umschlossen ist.

Escape‐Sequenz Ergebnis in der Zeichenkette

\n Zeilenumbruch, der nur im HTML‐Quellcode der Ergebnisseite zu sehen ist.
Dies dient der Übersichtlichkeit des Quellcodes, z. B. für eine Fehlersuche, da
standardmäßig die gesamte Ausgabe eines PHP‐Blocks nur eine Zeile im
HTML‐Code der Ergebnisseite einnimmt.

Im Browser wird das \n als ein Leerzeichen angezeigt. Mehrere Leerzeichen
und Zeilenumbrüche durch Steuerungszeichen im HTML‐Code werden in der
Browserdarstellung zu einem Leerzeichen zusammengefasst.

Sogenannte Steuerungszeichen wie \n für
einen Zeilenumbruch im HTML‐Quellcode
werden nur innerhalb von doppelten
Anführungszeichen vom PHP‐Interpreter
erkannt und ausgewertet. Steuerungs‐
zeichen in einfachen Anführungszeichen
werden vom Browser als solche angezeigt
und verlieren ihre beabsichtigte Funktion.
Die nebenstehende Abbildung (Ausgabe
der Beispieldatei sonderzeichen2.php)
zeigt, dass Steuerungszeichen in einfachen
Anführungszeichen im Browser ausgege‐
ben werden.

Beispiel: sonderzeichen3.php

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Sonderzeichen</title>
 </head>
 <body>
 <?php

 echo "\n<h1>Personal Computer (\"PC\")</h1>\n";

 echo "<p>'Windows' ist ein verbreitetes Betriebssystem.
\n";

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 23

 echo "Installiert wird es meist im Verzeichnis
 C:\\Windows</p>\n";
 ?>
 </body>
</html>

 Wenn Sie den Ausgabebefehl echo
mit doppelten Anführungszeichen
verwenden, setzen Sie innerhalb der
Zeichenkette einen Backslash J vor
die Anführungszeichen, damit das
Zeichen für PHP entwertet und wie
beabsichtigt angezeigt wird.

 Alternativ können Sie auch einfache Anführungszeichen nutzen, um Text hervorzuheben. Wird
die Zeichenkette durch doppelte Anführungszeichen begrenzt, beendet ein einfaches
Anführungszeichen die Zeichenkette nicht. Dies gilt entsprechend umgekehrt, wenn die
Zeichenkette mit einfachen Anführungszeichen umschlossen ist und Sie doppelte
Anführungszeichen in der Zeichenkette verwenden.

 Wenn Sie einen Backslash ausgeben möchten, setzen Sie einen zweiten Backslash davor.

Die nebenstehende Abbildung zeigt, wie
übersichtlich der Quelltext der Datei ist.
Dies kann Ihnen – vor allem bei längeren
Skripten – bei der Fehlersuche helfen.
Ohne Einsatz der im Beispiel verwende‐

ten Escape‐Sequenz \n würden Sie alle
Ausgaben in einer Zeile finden.

Deutsche Umlaute und ß – UTF-8‐Zeichensatz

Seit PHP 5.6 ist der Standardzeichensatz für PHP UTF-8. Dieser Zeichensatz umfasst alle deutschen
Umlaute. Das bedeutet, Sie können ohne weiteres ä, ö, ü und ß einsetzen.

In älteren PHP‐Versionen wird der Standardzeichensatz ISO 8859-1 verwendet. Je nach Angabe
im charset‐Metatag des HTML‐Dokuments kann es zu Problemen bei der Darstellung von
Umlauten kommen. Um eine fehlerhafte Darstellung zu vermeiden, können Sie statt der Umlaute

und des ß‐Zeichens die entsprechenden HTML‐Entities (ä, ü usw.) verwenden.

 Ausgabe der Beispieldatei „sonderzeichen3.php“

Quelltext der Beispieldatei „sonderzeichen3.php“

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 24 © HERDT‐Verlag

Achten Sie darauf, dass die PHP‐Dateien selbst

mit dem UTF-8‐Zeichensatz angelegt sind.
Diese Einstellung kann im Editor Notepad++
über die obere Menüleiste vorgenommen
werden. Verwenden Sie die UTF‐8 ohne BOM‐
Option. Der BOM (Byte Order Mark) ist ein
drei Bytes großes Zeichen am Anfang der
Datei und kann in Browsern zu Darstellungs‐
problemen führen.

Ist die PHP‐Datei selbst mit einem anderen Zeichensatz erstellt, kann es bei Umlauten zu Dar‐

stellungsproblemen kommen. Selbst wenn Sie den korrekten <meta charset="UTF-8">
angegeben haben, verursachen Sonderzeichen mit einem anderem Zeichensatz häufig eine fehler‐
hafte Darstellung. Die folgenden Quelltextbeispiele zeigen einerseits die Problematik, aber auch
Lösungen dafür. Generell gilt: Solange Sie die PHP‐Dateien mit dem UTF-8‐Zeichensatz angelegt
haben und die Einstellungen von PHP in der Standardeinstellung belassen, ist beim Einsatz von
Umlauten und dem ß keine Sonderbehandlung notwendig.

Beispiel: zeichensatz1.php (Datei mit falschem Zeichensatz)

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>falscher Zeichensatz 1</title>
 </head>
 <body>
 <?php

 echo "<p>Viel Spaß im Frühling!
\n";

 echo htmlentities("Viel Spaß im Frühling!", ENT_QUOTES,
 "ISO-8859-1");
 echo "\n</p>";
 ?>
 </body>
</html>

 Die Datei zeichensatz1.php ist mit einem falschen Zeichensatz angelegt. Hier wird eine Zeile

mit Sonderzeichen ausgegeben. Im folgenden Screenshot ist die Auswirkung in der ersten
Zeile zu sehen, die Ausgabe ist fehlerhaft.

 Über die PHP‐Funktion htmlentities() werden Umlaute und das ß in sogenannte
HTML‐Entities umgewandelt. Das sind Zeichen, die jeder Browser kennt und entsprechend
richtig – und das unabhängig von einem Zeichensatz – anzeigt.

Seit PHP 5.6 ist bei der Funktion htmlentities der Standardwert für den 3. Parameter,
welcher für die Zeichenkodierung verantwortlich ist, an den default_charset angepasst
worden. Der default_charset ist ebenfalls seit PHP 5.6 UTF-8, was bedeutet, dass bei der
Umwandlung von Sonderzeichen in HTML‐ Entities eine UTF-8‐Zeichenkette erwartet wird. Je
nach Zeichensatz der PHP‐Datei wandelt htmlentities Sonderzeichen gar nicht oder falsch
um. php.net empfiehlt, den Zeichenkodierungsparameter immer anzugeben, auch wenn der
Parameter optional ist. Für unbekannte Zeichensätze verwendet PHP ISO-8859-1.

Einstellung des UTF‐8‐Zeichensatzes der PHP‐Dateien
über den Notepad ++ Editor

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 25

Fehlerhafte Anzeige von Sonderzeichen

Rechts im Quelltext sind in der Zeile 8 die Sonder‐
zeichen als HTML‐Entities zu sehen.

Beispiel: zeichensatz2.php (Datei mit falschem Zeichensatz)

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>falscher Zeichensatz 2</title>
 </head>
 <body>
 <?php

 echo utf8_encode("<p>Viel Spaß im Frühling!</p>");
 ?>
 </body>
</html>

 Auch die PHP‐Datei zeichensatz2.php ist mit dem falschen Zeichensatz angelegt.

 Über die Funktion utf8_encode() werden Nicht‐UTF-8‐Zeichen in UTF-8‐Zeichen

umgewandelt. Damit wird die korrekte Ausgabe des Satzes mit Umlauten und ß sichergestellt.
In der untenstehenden Abbildung links ist die fehlerfreie Darstellung zu sehen.
In der Abbildung rechts können Sie sehen, dass die Umlaute und das ß auch im Quelltext
richtig angezeigt werden.

Die Zeichensatzproblematik tritt häufig dann auf, wenn Daten aus anderen Quellen (z. B. aus
Datenbanken) stammen, auf deren Zeichensatz Sie keinen Einfluss haben. In dem Fall haben Sie mit
diesen beiden Beispielen Lösungen für das Problem an der Hand. Rührt das Problem aus einem

falschen Zeichensatz einer Datei, ist die Umwandlung der Datei in eine UTF-8‐Datei zu empfehlen.
Dies erspart Ihnen umständliches Umwandeln von Zeichenketten.

HTML-Entities

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 26 © HERDT‐Verlag

Alle Beispieldateien, die im Buch verwendet werden und als Download bereitstehen (mit Ausnah‐

me der beiden zuletzt vorgestellten) sind mit dem Zeichensatz UTF-8 erstellt. Das bedeutet,
Sonderzeichen können als ä, ö, ü und ß im Quellcode verwendet werden, eine besondere Behand‐
lung ist nicht notwendig.

3.4 Grundlagen zur Fehlersuche in PHP‐Skripten

Fehlerarten in PHP

PHP kennt drei Kategorien von Fehlern:

Bezeichnung Relevanz Erläuterung

Fehler Schwerwiegend – sofort
beheben.

PHP‐Skripte mit Fehlern
brechen das Skript an der
Stelle ab oder werden erst
gar nicht ausgeführt, falls
diese nicht explizit abgefan‐
gen werden (erst ab PHP 7.0
möglich, siehe weiter unten)

Am häufigsten treten schwerwiegende Fehler
(fatal error) und Fehler bei der Analyse des PHP‐
Codes (parse error) auf. Eine Fehlermeldung wird
ausgegeben.

 Bei schwerwiegenden Fehlern wird das Skript
bis an diese Fehlerstelle ausgeführt.

 Bei einem parse error entdeckt der PHP‐
Interpreter den Fehler sofort und führt das
Skript nicht aus.

Warnung Wichtig – zu beachten, mög‐
lichst sofort beheben.

PHP‐Skripte mit Warnungen
werden trotzdem bis zu Ende
ausgeführt.

Warnungen (warning) deuten meist auf schwere‐
re Fehler hin, die sofort behoben werden sollten.
Es kann passieren, dass Ihr Skript nicht mehr wie
gewünscht funktioniert.

Eine Fehlermeldung wird ausgegeben, das Skript
wird jedoch weiter ausgeführt.

Benachrich‐
tigung

Gut zu wissen – Behebung
empfohlen.

Benachrichtigungen haben
keinen Einfluss auf die Aus‐
führung von PHP‐Skripten.

Benachrichtigungen (notice) stören selten den
Ablauf des Skripts. Im Sinne einer „sauberen“
Programmierung sollten Sie allerdings die
Ursache der notice beheben.

Seit PHP 5.6 werden bei der PHP‐Standardinstallation Fehler, Warnungen und Benach‐
richtigungen im Browser angezeigt. Fehler lassen sich meist schnell finden, da neben der
eigentlichen Meldung sowohl der Dateiname einschließlich Dateipfad sowie die Zeilennummer
ausgegeben werden, in der der Fehler aufgetreten ist. Treten Fehler auf, werden im Browser die
englischen Bezeichnungen der Fehlerkategorien angezeigt:

 error  warning  notice

Wie können Fehler entstehen?

Fehler und Fehlerbehebung sind bei der PHP‐Programmierung ein Teil des täglichen Entwick‐
lungsprozesses. Häufig handelt es sich um Tipp‐ oder Flüchtigkeitsfehler. Beispiele hierfür sind:

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 27

 fehlendes Semikolon zum Abschluss eines Befehls;

 fehlendes $‐Zeichen bei der Verwendung von Variablen, z. B. stadt anstelle von $stadt,
oder ein falsches Zeichen, z. B. §stadt anstelle von $stadt;

 sonstige Syntaxfehler, z. B. Schreibfehler wie eco statt echo;

 fehlendes Komma oder fehlende Klammer, siehe folgendes Beispiel:

Beispiel: fehlertest.php

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>PHP-Fehlerausgabe erzwingen</title>
 </head>
 <body>
 <h1>Viele Fehler in einem Skript</h1>
 <?php

 error_reporting(E_ALL); // PHP-Standardeinstellung

 echo "<p>Der Wert der Variablen i ist: " . $i . "</p>";
 // Variable nicht definiert: notice

 echo 4 / 0;

 prin_r($i); // Befehl falsch geschrieben: fatal error
 ?>
 </body>
</html>

 Über den Schalter E_ALL für die Funktion error_reporting() weisen Sie PHP an,
Fehler aller Kategorien error, warning und auch notices anzuzeigen (E_ALL ist seit PHP 5.4
die Standardeinstellung für error_reporting(). Sprich: auch ohne die Zeile  in dem
PHP‐Code werden error, warning und notices angezeigt. Bei älteren PHP‐Versionen als PHP
5.4 müssen Sie error_reporting(E_ALL)explizit setzen, wenn Sie die drei
Fehlerkategorien angezeigt haben möchten). Statt error_reporting(E_ALL) können
Sie auch die Anweisung error_reporting(-1) notieren, die Auswirkung ist die
gleiche.

 Durch die Verwendung der nicht definierten Variablen $i erzeugen Sie eine Fehlermeldung
der Kategorie notice. Durch die korrekte Deklaration (Bekanntgabe der Variable) und
Initialisierung (Wertzuweisung) z. B. $i = 0 vor der Verwendung der Variablen wird der
Fehler behoben und damit die Fehlermeldung beseitigt. Grundlagen zu Variablen in PHP
finden Sie im folgenden Kapitel.

 Die nicht erlaubte Division durch 0 erzeugt eine Fehlermeldung der Kategorie warning.

 Eine falsche Schreibweise von prin_r() (print_r wäre richtig) erzeugt einen schwer‐
wiegenden Fehler der Kategorie fatal error. Ein fatal error führt dazu, dass der PHP‐
Interpreter das Skript nicht weiter ausführt, er bricht die Verarbeitung des Skriptes an dieser
Stelle sofort ab. Es sei denn, dieser wird über ein Error‐Handling abgefangen, was jedoch
erst mit PHP 7.0 eingeführt wurde.

Lizenziert für ComCave College GmbH

 3 Grundlegende Sprachelemente

 28 © HERDT‐Verlag

Ausgabe Beispieldatei „fehlertest.php“

Hinweise zur Fehlersuche

Im Beispiel meldet PHP die jeweilige Zeile, in der ein Fehler aufgetreten ist. Zum Auffinden des
Fehlers schauen Sie sich die Zeile an, die Ihnen in der Fehlermeldung mitgeteilt wird. Es kann
vorkommen, dass die Fehlermeldung auf eine bestimmte Zeile hinweist, der Fehler jedoch in den
Zeilen davor verursacht wurde, beispielsweise aus einer zuvor falsch erstellten Wertzuweisung.
Finden Sie in der angegebenen Zeile keinen Fehler, suchen Sie in den vorhergehenden Zeilen
(notfalls bis zum Dateianfang). In den meisten Fällen finden Sie jedoch den Fehler in der ange‐
gebenen Zeile.

Über error_reporting(E_ERROR | E_WARNING | E_PARSE) können Sie die
Fehlermeldungen auf die wichtigsten Meldungen einschränken. Alternativ können Sie über

error_reporting(E_ALL ^ E_NOTICE) alle Meldungen um die notice‐Meldungen

reduzieren. Das ^-Zeichen vor E_NOTICE bedeutet "NICHT". Der in PHP 5 eingeführte
Schalter E_STRICT wird in PHP 7 nicht mehr verwendet. Er ist noch in PHP enthalten, damit alte

PHP‐Skripte, in denen E_STRICT verwendet ist, in Zukunft keine Fehler werfen.

Für Webseiten, die online sind, sollten Sie die Anweisung error_reporting(0);
verwenden. Dieser PHP‐Befehl mit dem Parameter 0 deaktiviert alle Fehlermeldungen.
Fehlermeldungen irritieren einerseits die Webseitenbesucher, andererseits liefern sie
potentiell wertvolle Informationen über Ihre Programmierung, was ein Sicherheitsrisiko
darstellen kann. Auf dem Entwicklungssystem sollten hingegen möglichst alle Meldungen
aktiviert sein, damit diese erkannt und behoben werden können.

Fehlerbehandlung ab PHP 7.0

Eine wesentliche Neuerung in PHP 7.0 ist das Throwable Interface. Dies ermöglicht erstmals,
auch fatal error abzufangen. Schwerwiegende Fehler führten in älteren PHP‐Versionen immer
zum Abbruch des PHP‐Skriptes. Der Abbruch erfolgt ohne Fehlermeldung für den Endanwender,
entweder mit weißem Browserfenster, wenn die Fehlerausgabe in dem Browser deaktiviert war,
oder mit einem technischen Hinweis zum Fehler, welcher schlimmstenfalls z. B. Datenbank‐
Passwörter enthielt.

Lizenziert für ComCave College GmbH

Grundlegende Sprachelemente 3

 © HERDT‐Verlag 29

Über Throwable können in Zukunft auch schwerwiegende Fehler abgefangen werden. Sie können

an Stellen, an denen Sie potentiell einen Fehler erwarten, einen sogenannten try-catch‐Block
einbinden, den Fehler abfangen, den weiteren Skriptverlauf entsprechend steuern und dem
Nutzer eine neutrale Fehlermeldung anzeigen.

Die Fehlerbehandlung per Exception ‐Handler und das Throwable Interface sind kein Teil der
PHP‐Grundlagen.

3.5 Übung

Grundlegende Sprachelemente

Level

Zeit ca. 10 min

Übungsinhalte  PHP in HTML einbinden

 Anführungszeichen

 Einsatz von Escape‐Sequenzen (Steuerungszeichen)

 Ausgabe von Inhalten im Browser

 Kommentare

Übungsdatei ‐‐

Ergebnisdatei ausgabe.php

1. Schreiben Sie ein PHP‐Skript, das eine

Webseite erstellt. Die Webseite soll einige
Informationen über Ihren Lieblingssportler
bzw. ‐künstler enthalten. Verwenden Sie eine
HTML‐Überschrift wie z. B. Gitarrenlegende
Eric Clapton.

2. Wechseln Sie dann in einen PHP‐Block:

Mithilfe des Befehls echo soll die Seite in
mehreren Zeilen Informationen über für Sie
interessante Eckdaten der ausgewählten
Person enthalten, z. B. beste CDs, Geburtstag
etc.

Bauen Sie in die Zeichenkette Sonderzeichen ein, wie z. B. Anführungszeichen. Verwenden
Sie das p‐Tag, welches HTML für Textblöcke (Paragraph) vorsieht. Verwenden Sie
Steuerungszeichen, um den HTML‐Code übersichtlicher darzustellen.

3. Kommentieren Sie Ihr PHP‐Skript ausführlich.

4. Formatieren Sie einen Satz innerhalb der echo‐Befehle in einer anderen Farbe und in
Fettdruck.

5. Speichern Sie die Datei unter dem Namen ausgabe.php und rufen Sie die Seite in Ihrem
Browser auf.

6. Bauen Sie im Kapitel genannte mögliche Fehler ein und prüfen Sie die auftretenden
Fehlermeldungen im Browser.

Beispiel‐Ergebnisdatei „ausgabe.php“

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 30 © HERDT‐Verlag

4
4. Variablen und Operatoren

Beispieldateien: Dateien aus Ordner Kap04

4.1 Variablen

Mit Variablen arbeiten

Variablen dienen dazu, Informationen zu speichern, die für die weitere Ausführung des Programms
notwendig sind. In PHP ergibt sich der Datentyp einer Variablen automatisch durch den Datentyp
des Wertes, welcher der Variablen zugewiesen wird. Anders als in einigen anderen Programmier‐
sprachen müssen Sie den Datentyp nicht definieren. Der Datentyp einer Variablen kann sich auch
im laufenden Skript ändern, ohne dass es zu einem Fehler kommt.

Datentypen in PHP

PHP kennt folgende Datentypen:

Datentyp Bezeichnung Beispiel

Wahrheitswert boolean (auch bool) true (wahr) oder false (falsch)

Ganzzahl integer 42 oder ‐23

Fließkommazahl float (auch double) 1.95883 oder ‐207.14

Zeichenkette string "HERDT‐Verlag Bodenheim" oder 'Andreas'

ohne Wert null ohne Wert ‐ einzig möglicher Wert: NULL

Array (ein‐ oder
mehrdimensionale
Arrays)

array ("Frankfurt", "Berlin", "Zürich") oder
("England" => "London", Frankreich" => "Paris")

Ressource resource Verweis auf eine Ressource, wie z. B. ein Bild

Objekt object Wird in der objektorientierten Programmierung
einer Klasseninstanz zugeordnet

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 31

Namensgebung bei Variablen

Der Name einer Variablen muss in PHP immer mit dem Dollarzeichen O beginnen. Daran
erkennt PHP, dass es sich um eine Variable handelt. Für die Benennung von Variablen gelten
folgende Regeln:

Eine Variable

 darf nur aus Buchstaben, Ziffern und dem Unterstrich : bestehen. Andere Sonderzeichen
sind nicht erlaubt.

 muss mit einem Buchstaben oder dem Unterstrich : beginnen (z. B. $miete oder $_miete).
Danach kann eine beliebige Anzahl Buchstaben, Ziffern oder Unterstriche folgen.

 darf keine Leerzeichen enthalten.

 kann Groß‐ und Kleinbuchstaben enthalten, wobei zwischen Groß‐ und Kleinschreibung
unterschieden wird, z. B. $PrimZahl ist nicht gleich $primzahl.

 sollte nach Möglichkeit keine Umlaute oder ß enthalten.

 Besteht ein Variablenname aus mehreren Begriffen, können die einzelnen Begriffe durch

Unterstriche voneinander getrennt werden, z. B. $post_versand_gebuehr.
Gebräuchlich ist auch die sogenannte CamelCase‐Schreibweise, bei der jeder Begriff mit
einem Großbuchstaben beginnt, z. B. $PostVersandGebuehr. Die Schreibweise sollte
für alle Variablen einheitlich gewählt werden.

 Durch das Voranstellen eines einzelnen Buchstabens kann auf den Datentyp hingewiesen

werden, wofür die Variable verwendet wird, z. B. $iNummer (i für integer), $fPreis (f
für float) oder $sOrt (s für string).

 sollte nicht identisch sein mit einem sogenannten reservierten Wort.

Reservierte Wörter (PHP‐Keywords)

In PHP sind bestimmte Zeichenketten bzw. Wörter als Schlüsselwörter definiert. Diese können zwar
als Variablenname verwendet werden, jedoch sollten Sie dies vermeiden, da Keywords als Vari‐
ablenbezeichnung PHP‐Code unnötig verkomplizieren. Als Konstantennamen (vgl. Abschnitt 4.4),
Funktionsnamen (vgl. Kapitel 8) oder Klassennamen sind reservierte Wörter verboten.

Liste reservierter Schlüsselwörter

__halt_compiler() abstract and array() as

bool break callable case catch

class clone const continue declare

default die() do echo else

elseif empty() enddeclare endfor endforeach

endif endswitch endwhile eval() exit()

extends false final finally float

for foreach function global goto

if implements include include_once instanceof

insteadof int interface isset() list()

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 32 © HERDT‐Verlag

Liste reservierter Schlüsselwörter

mixed namespace new null numeric

object or print private protected

public require require_once resource return

static string switch throw trait

true try unset() use var

while xor yield

Deklaration (Bekanntgabe) und Initialisierung (Wertzuweisung)

$variable = 5;

Über diese Codezeile wird in PHP eine Variable deklariert und initialisiert. Die Deklaration ist die
Namensvergabe, also die Bekanntmachung der Variable, die Initialisierung ist die Wertzuweisung.
Diese Wertzuweisung wird über das Gleichzeichen (Zuweisungsoperator) 9 durchgeführt.

Anders als in anderen Programmiersprachen werden Variablen in PHP ohne Datentyp‐Definitionen
deklariert. Es wird vorher nicht explizit festgelegt, welcher Datentyp (z. B. integer, boolean, string)
in einer Variable vorkommen darf.

PHP „untersucht“ den Wert, welcher der Variablen zugewiesen wird und vergibt entsprechend
automatisch den passenden Datentyp. Worte zum Beispiel erzeugen eine Variable vom Datentyp
string, eine ganze Zahl vom Datentyp integer. Weisen Sie innerhalb eines PHP‐Skripts einer
bereits definierten Variablen einen Wert eines anderen Datentyps zu, passt PHP den Datentyp
automatisch an.

Beispiele hierfür finden Sie nachfolgend in der Datei var_verhalten.php.

4.2 Variablen und Operatoren für Zahlen

Mit numerischen Datentypen arbeiten

Die numerischen Datentypen werden in Ganzzahl‐ und Fließkommazahl‐Datentypen unterteilt.
Sie werden für Berechnungen, Aufzählungen und Nummerierungen eingesetzt. Ganzzahlen, also
Zahlen ohne Nachkommastellen, werden als integer bezeichnet. Zahlen mit Nachkommastellen
(Fließkommazahl, auch Gleitkommazahl) werden als float (auch double) bezeichnet.

In allen Beispielen ab diesem Kapitel werden die HTML‐Tags <!DOCTYPE html>, <html>,
<head>, <meta>, <title> und <body> nicht mit abgedruckt. Sie sind für das Verständnis
der PHP‐Skripte nicht relevant. Die Beispieldateien zum Buch enthalten diese Tags.

Beispiel: preis.php

Im folgenden Beispiel wird der Preis für den Einkauf beim Obstbauern berechnet:

 <?php
 $preis_apfel = 2.59;

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 33

 $menge = 4;
 $gesamtpreis = $preis_apfel * $menge;
 echo $gesamtpreis;

?>

 Es wird die Variable $preis_apfel angelegt und der Zahlenwert 2.59 zugewiesen.

$preis_apfel wird damit zu einer Variablen mit dem Datentyp float (Fließkommazahl).

PHP verwendet den Punkt als Dezimaltrennzeichen (englische Notation), die deutsche Nota‐
tion von Fließkommazahlen mit einem Komma ist in PHP nicht zulässig und führt zum Fehler.

 Die Variable $menge wird mit dem Zahlenwert 4 initialisiert. Die Variable $menge ist damit
eine Variable mit dem Datentyp integer (Ganzzahl).

 Die Variable $gesamtpreis wird eingeführt. Ihr wird das Ergebnis aus der Multiplikation

von $preis_apfel und $menge zugewiesen. Die Variable $gesamtpreis wird aufgrund
des Rechenergebnisses ebenfalls zu einer Variablen vom Datentyp float (Fließkommazahl).

 Über den Befehl echo wird der Wert der Variablen $gesamtpreis ausgegeben.

Arithmetische Operatoren

Mit arithmetischen Operatoren können mathematische Berechnungen durchgeführt werden. Sie
erwarten entweder Ganzzahl‐ bzw. Fließkommazahl‐Variablen oder feste Werte als Parameter
und liefern ein numerisches Ergebnis zurück. Sie können folgende Operatoren verwenden:

Operator Name Bedeutung Beispiel Wert nach der
Operation

+ Addition $a + $b ergibt die
Summe von $a und $b.

$a = 10;
$b = 2;
$c = $a + $b;

$c = 12

- Subtraktion $a - $b ergibt die
Differenz von $a und
$b.

$a = 10;
$b = 2;
$c = $a - $b;

$c = 8

* Multiplikation $a * $b ist das
Produkt aus $a und $b.

$a = 10;
$b = 2;
$c = $a * $b;

$c = 20

/ Division $a / $b ist der
Quotient von $a und
$b.

$a = 10;
$b = 2;
$c = $a / $b;

$c = 5

** Potenz $a ** $b ist die
Potenz aus $a hoch
$b.

$a = 10;
$b = 2;
$c = $a ** $b;

$c = 100

% Modulo $a % $b ist der Rest
der ganzzahligen

Division von $a und $b.

$a = 10;
$b = 3;
$c = $a % $b;

$c = 1

++ Präinkrement

++$a erhöht die
Variable $a um 1 vor
der weiteren
Verwendung.

$a = 10;
$b = 2;
$c = ++$a + $b;

$a = 11
$c = 13

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 34 © HERDT‐Verlag

Operator Name Bedeutung Beispiel Wert nach der
Operation

-- Prädekrement --$a verringert die
Variable $a um 1 vor
der weiteren
Verwendung.

$a = 10;
$b = 2;
$c = --$a + $b;

$a = 9
$c = 11

++ Postinkrement $a++ erhöht die
Variable $a um 1 nach
der Verwendung.

$a = 10;
$b = 2;
$c = $a++ + $b;

$a = 11
$c = 12

-- Postdekrement $a-- verringert die
Variable $a um 1 nach
der Verwendung.

$a = 10;
$b = 2;
$c = $a-- + $b;

$a = 9
$c = 12

+= Zuweisungs‐
operator

$a += $b weist der
Variablen $a den Wert
$a + $b zu (Kurz‐
schreibweise für $a =
$a + $b).

$a = 10;
$a += 5;

$a = 15

-= Zuweisungs‐
operator

$a -= $b ist die Kurz‐
schreibweise für $a =
$a - $b.

$a = 10;
$a -= 5;

$a = 5

*= Zuweisungs‐
operator

$a *= $b ist die Kurz‐
schreibweise für $a =
$a * $b.

$a = 10;
$a *= 5;

$a = 50

/= Zuweisungs‐
operator

$a /= $b ist die
Kurzschreibweise für $a
= $a / $b.

$a = 10;
$a /= 5;

$a = 2

Werden mehrere Berechnungen in einer Zuweisung durchgeführt (z. B. $a = $b - $c *
$d), werden die üblichen mathematischen Rechenregeln angewandt:

 Bearbeitung der Berechnung von links nach rechts

 Punkt‐ vor Strichrechnung

 Geklammerte Ausdrücke werden zuerst ausgewertet.

Der Potenz‐Operator ** wurde mit PHP 5.6 eingeführt. $a ** $b ist die Potenz aus $a hoch
$b. $a vor dem ** ist dabei die Basis (Grundzahl), $b hinter dem ** ist der Exponent (Hochzahl).

Beispiel: berechnung.php

 <?php

 $preis_apfel = 2.59;
 $menge_jonagold = 4;
 $menge_idared = 10;
 $menge_elstar = 15;

 $gesamtmenge = $menge_jonagold + $menge_idared + $menge_elstar;

 $gesamtpreis = $gesamtmenge * $preis_apfel;

 echo $gesamtpreis;
?>

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 35

 Den Variablen $preis_apfel, $menge_jonagold, $menge_idared und
$menge_elstar werden Werte zugewiesen. Verwenden Sie möglichst aussagekräftige
Variablenbezeichnungen. Dies erhöht die Nachvollziehbarkeit Ihrer Skripte.

 Die Addition der Variablen $menge_jonagold, $menge_idared und
$menge_elstar ergibt 29. Dieser Wert wird der neuen Variablen $gesamtmenge
zugewiesen und somit zwischengespeichert.

 Die Variable $gesamtmenge wird mit dem Preis $preis_apfel multipliziert (ergibt
75.11) und der Variablen zugewiesen. Mehrere Berechnungen, wie hier die Addition  und
die Multiplikation , können Sie in mehrere Schritte aufteilen. Das macht den PHP‐Code
verständlicher.

 Abschließend wird der Wert der Variablen $gesamtpreis per echo im Browser ausgegeben.

4.3 Variablen und Operatoren für Zeichenketten

Mit Zeichen‐Datentyp (string) arbeiten

Der Zeichen‐Datentyp kann beliebige Zeichen des erweiterten Unicode‐Zeichensatzes enthalten.
Der in PHP verwendete Zeichen‐Datentyp ist die Zeichenkette, auch string genannt. Zeichen‐
ketten werden bei der Wertzuweisung in Anführungszeichen bzw. Hochkommata eingeschlossen.

Zeichenkettenoperator

Sie können mehrere Zeichenketten oder Zahlen (Ganz‐ oder Fließkommazahlen) und Zeichen‐
ketten über den Zeichenkettenoperator . miteinander verknüpfen. Der Fachbegriff für die
Zeichenkettenverknüpfung ist Konkatenation. Das Ergebnis einer Konkatenation ist immer ein
Wert vom Datentyp string.

Operator Bedeutung Beispiel

. Verketten von Zeichenketten $a = "Hamburg ist ";
$b = "eine schöne";
$c = $a .$b ." Stadt.";
echo $c;

.= Anhängen einer Zeichenkette
an eine bereits vorhandene
Variable

$a = "Hamburg ist";
$a .= " eine schöne";
$a .= " Stadt.";
echo $a;

In beiden Beispielen erhalten Sie als Ausgabe Hamburg ist eine schöne Stadt. Sie sehen
auch, dass Sie sich innerhalb der Zeichenketten selbst um die Leerzeichen am Übergang der einzelnen
Zeichenketten kümmern müssen.

Gemäß mathematischen Rechenregeln hat die Konkatenation die gleiche Priorität wie
Addition und Subtraktion. Hier werden die Operationen von links nach rechts durchgeführt.
Die Konkatenation hat aber eine geringere Priorität als Multiplikation und Division, hier wird
die Konkatenation erst danach durchgeführt, unabhängig davon, in welcher Reihenfolge die
Operationen stehen.

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 36 © HERDT‐Verlag

 <?php
 $b = 3;
 $c = 5;

 $a = "Zahl " . $b * $c;

 $a = "Zahl " . $b + $c;

 $a = $b + $c . " Zahl";

 $a = "Zahl " . ($b + $c);
?>

 $a erhält den Wert Zahl 15 – zuerst wird die Multiplikation durchgeführt, danach die
Konkatenation (Verknüpfung) der Zeichenketten.

 Hier werden die Operationen von links nach rechts durchgeführt. Im ersten Schritt wird über

eine Konkatenation der string‐Wert Zahl mit dem integer‐Wert 3 zu der Zeichenkette Zahl
3 verknüpft. Zu dieser Zeichenkette soll der Wert der Variablen $c (= 5) addiert werden.
Damit diese Addition durchgeführt werden kann, wandelt PHP den Datentyp von Zahl 3
(string) durch die automatische Typkonvertierung in den Datentyp integer um. Aus Zahl 3
(string) wird 0 (integer). Somit werden 0 und 5 addiert. Der Wert von $a ist 5.

 Wird die Addition vor der Zeichenkettenverknüpfung durchgeführt, wird das Ergebnis der
Addition mit der Zeichenkette verbunden (konkateniert). $a hat anschließend den Wert

8 Zahl.
 Soll eine Addition oder Subtraktion vor einer Zeichenkettenverknüpfung durchgeführt

werden, müssen entsprechend Klammern gesetzt werden. Hier wird $a der Wert Zahl 8
zugewiesen.

Ausgabe von Variablen

Bei der Ausgabe einer Variablen kann deren Wert oder deren Bezeichnung ausgegeben werden.
Ob der Wert oder der Variablennamen angezeigt wird, hängt von der Einbettung der Variable im
PHP‐Code ab.

Beispiel: var_ausgabe.php

Hier werden die verschiedenen Ausgabemöglichkeiten aufgezeigt.

 <?php

 $stadt = "Göttingen";
 $uni = "Georg-August-Universität";
 $jahr = 1736;
 $heute = 2016;
 // Wert der Variablen werden angezeigt

 echo "<p>$jahr wurde die $uni in $stadt gegründet.</p>";
 // Name der Variablen werden angezeigt

 echo '<p>$jahr wurde die $uni in $stadt gegründet.</p>';
 // Ausgabe von Berechnungen mit Variablen sowie Zeichenketten

 echo "<p>Die Gründung der $uni in $stadt erfolgte vor " . ($heute -
 $jahr) . " Jahren.</p>";
?>

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 37

 Den Variablen $stadt, $uni, $jahr und $heute werden Zeichenketten‐ bzw. Ganz‐
zahlenwerte zugewiesen.

 Zeichenketten in doppelten Anführungszeichen werden von PHP geparst (ausgewertet).
Die Variablen werden erkannt, ausgelesen und angezeigt.

 Zeichenketten in Hochkommata (einfache Anführungszeichen) werden von PHP nicht
geparst. Hier werden die Werte der Variablen nicht ausgewertet, sondern die Variablen‐
namen ausgegeben.

 Wenn Sie eine Ausgabe mit dem Ergebnis einer Berechnung verknüpfen möchten, müssen
Sie die Berechnung außerhalb der Zeichenketten vornehmen und diese in Klammern setzen.
Innerhalb der Anführungszeichen werden Operatoren nur als einfache Zeichen einer
Zeichenkette verstanden.

Ausgabe der Beispieldatei „var_ausgabe.php"

Das $‐Zeichen, das als Erkennungszeichen der Variablen dient, wird von PHP innerhalb von
Zeichenketten in doppelten Anführungszeichen erkannt und interpretiert. Soll das $‐Zeichen als
Teil der Zeichenkette angezeigt werden, muss dem $‐Zeichen ein Backslash J vorangestellt

werden. Dadurch wird das $‐Zeichen vor PHP versteckt. PHP interpretiert dann das $‐Zeichen
nicht, es wird deshalb als $ im Browser angezeigt. Das Voranstellen eines Backslashs J wird als
escapen bezeichnet.

Beispiel: zeichenkette.php

Nachfolgend werden Variablen auf verschiedene Arten mit Werten gefüllt und über den Befehl

echo im Browser ausgegeben.

 <?php
 /*
 Peter hat zu Hause noch amerikanische Dollar (USD) gefunden.
 Welchen Wert (in Euro) hat sein Fund?
 */

 $dollar = 1240.45;
 $kurs = 1.25; // Umrechnungskurs Dollar-Euro
 $euro = $dollar / $kurs;

 $bezeichnung_dollar = "US Dollar (USD)";
 $bezeichnung_euro = "EURO";

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 38 © HERDT‐Verlag

 $ausgabe = "<p>Peter sagt: 'Meine " . $dollar . " " .
 $bezeichnung_dollar;

 $ausgabe .= " sind " . $euro . " " . $bezeichnung_euro . "
 wert.'</p>";

 echo $ausgabe;

 echo "<p>Peter sagt: 'Meine $dollar $bezeichnung_dollar sind
 $euro $bezeichnung_euro wert.'</p>";

 echo '<p>Peter sagt: \'Meine $dollar $bezeichnung_dollar
 sind $euro $bezeichnung_euro wert.\'</p>';
?>

 Den Variablen $dollar und $kurs werden Werte zugewiesen und der Wert der Variablen

$euro wird berechnet.

 Den Variablen $bezeichnung_dollar und $bezeichnung_euro werden Zeichen‐
ketten zugewiesen. Verwenden Sie sprechende Variablenbezeichnungen. Umso besser der
Name der Variablen deren Aufgabe im PHP‐Code beschreibt, umso einfacher ist ein PHP‐
Skript (für Sie und andere Entwickler) zu „lesen“. Siehe Zeilen  und .

 Mithilfe des Operators . wird der Variablen $ausgabe eine Zeichenkette zugewiesen.
Hierfür werden einzelne Zeichenketten, Variablen und HTML‐Code miteinander verbunden.
Bei der Verkettung der Zeichenketten müssen Sie selbst für die Leerzeichen zwischen den
Wörtern sorgen.

 Mithilfe des Operators . 9 wird die Zeichenkette $ausgabe verlängert. Diese Vor‐
gehensweise empfiehlt sich, um den Code übersichtlicher und gut lesbar zu gestalten.

 Es erfolgt die Ausgabe der Variablen $ausgabe mithilfe des Befehls echo.

 Sie können die gleiche Ausgabe auch direkt über eine Zeichenkette erreichen. Die Variablen‐
werte der angegebenen Variablen werden ausgegeben, wenn Sie die Zeichenkette durch
doppelte Anführungszeichen begrenzen.

 Steht hingegen eine Variable innerhalb einer durch Hochkommata begrenzten Zeichenkette,
wird der Name der Variablen ausgegeben und nicht ihr Wert. Beachten Sie auch die Not‐
wendigkeit, den Hochkommata innerhalb der Zeichenkette ein J voranzustellen. Fehlen
diese Zeichen, erhalten Sie eine Fehlermeldung, da das zweite bzw. nachfolgende Hoch‐
komma die Zeichenkette beenden würde.

Ausgabe der Beispieldatei „zeichenkette.php"

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 39

Variablen in PHP

Variablen in PHP zu verwenden ist, gemessen an anderen Programmiersprachen wie z. B. JAVA,
vergleichsweise einfach. Eine Variablendeklaration zur Festlegung des Datentyps ist nicht not‐
wendig. Es reicht, einer Variablen einen Wert zuzuweisen, PHP weist automatisch anhand des
Wertes den richtigen Datentyp zu. Damit ist PHP wesentlich fehlertoleranter als andere
Programmiersprachen.

Dieser einfache Umgang mit Variablen bringt jedoch einige Besonderheiten mit sich:

 Variablen können in Zeichenketten verwendet werden, z. B. zur Ausgabe durch den echo‐
Befehl. Ist die Zeichenkette durch doppelte Anführungszeichen begrenzt, werden die Werte
der Variablen ausgelesen und zurückgeliefert. In anderen Programmiersprachen müssen
häufig Variablen und Zeichenketten getrennt voneinander notiert und gegebenenfalls mit‐
einander verkettet werden.

 Eine Variable in PHP kann während des Programmablaufs den Datentyp ändern. Dies kann
entweder von Ihnen explizit so programmiert sein oder der Datentyp wird automatisch
durch eine Berechnung geändert. Dieses Verhalten ist ausdrücklich erwünscht. Eine Fehler‐
meldung – wie sie viele Programmierer anderer Programmiersprachen erwarten – wird
daher nicht ausgegeben.

 PHP erlaubt es, Rechenoperationen mit Zeichenketten durchzuführen. Rechenoperationen
von Zahlenwerten mit Zeichenketten führen in PHP nicht zu einer Fehlermeldung. Dabei ist
zu beachten:

 Führende Leerzeichen in der Zeichenkette werden ignoriert.

 Beginnt eine Zeichenkette mit einer Zahl – auch nach führenden Leerzeichen – wird die
Zahl extrahiert und für Berechnungen verwendet. Beispielsweise ergibt "10 graue
Mäuse" den Zahlwert 10, "30.7 ABC 99.3" ergibt 30.7, "4AD" ergibt 4.

 Beginnt eine Zeichenkette nicht mit einer Zahl (auch nach führenden Leerzeichen),
ergibt sich automatisch ein Zahlwert von 0, der für Rechenoperationen verwendet wird.

Beispiel: var_verhalten.php

Im nachfolgenden Beispiel sehen Sie die beschriebenen Besonderheiten bei der Verwendung von
Variablen in PHP:

 <?php

 $test = "10"; // String
 echo $test . " (" . gettype($test) . ")
";

 $test = $test * 2; // Integer (20)
 echo $test . " (" . gettype($test) . ")
";

 $test = $test + 1.75; // Fließkommazahl (21.75)
 echo $test . " (" . gettype($test) . ")
";

 $test = 5 + "10 Tassen Tee"; // Integer (15)
 echo $test . " (" . gettype($test) . ")
";

 $test = $test + "Kaffeetassen: 530"; // Integer (bleibt 15)
 echo $test . " (" . gettype($test) . ")
";
?>

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 40 © HERDT‐Verlag

 Der Variablen $test wird der Wert 10 zugewiesen, allerdings in Anführungszeichen. Damit
handelt es sich um eine Zeichenkette, die Variable hat also den Datentyp string. Im folgen‐
den PHP‐Code wird diese Variable über verschiedene Operationen verändert. Über die

Funktion gettype() wird der Datentyp ausgegeben, um zu prüfen, welchen Datentyp die
Variable nach der Veränderung hat.

 Die Zeichenkettenvariable $test wird mit der Zahl 2 multipliziert (Zahlwert 10 * 2 = 20).
Durch die Rechenoperation ermittelt PHP den Zahlwert aus einer Variablen des Datentyps

string. In diesem Beispiel wird die Variable $test in den Dateityp integer mit dem Wert 10
umgewandelt, der dann für die weitere Berechnung verwendet wird.

 Durch Addition einer Fließkommazahl ändert die Variable nochmals ihren Datentyp und wird
zu einer Variablen des Datentyps float.

 Hier wird zu der Zahl 5 die Zeichenkette 10 Tassen Tee addiert. PHP wandelt die
Zeichenkette 10 Tassen Tee automatisch in 10 um, um einen verwendbaren Wert für

die Rechenoperation zu haben. Die Summe aus Zahl und Zeichenkette ergibt 15.
 Die Variable $test hat aus der vorherigen Rechenoperation den Wert 15. Durch die

beabsichtigte Addition wandelt auch hier PHP die Zeichenkette Kaffeetassen: 530 in
eine Zahl um. Da die Zeichenkette mit einem Buchstaben beginnt, ermittelt PHP den Wert 0.
Das Ergebnis der Addition ist 15 (15 + 0 = 15).

Sie können jederzeit abfragen, welchen Datentyp eine bestimmte Variable aufweist und ent‐
sprechend darauf reagieren. Zur Abfrage des Datentyps können Sie die Funktion
gettype(<Variablenname>) verwenden, z. B.:

$variable = 39;
echo gettype($variable); // gibt in diesem Fall "integer" aus

4.4 Konstanten

Variablen können variable Werte haben. Über Operatoren können Variablen im laufenden PHP‐
Skript verändert werden und neue Werte annehmen. Es gibt allerdings auch Werte, deren Wert‐
änderung durch das Skript nicht gewollt ist oder deren Änderung unsinnig wäre, wie z. B. die fest‐
stehende Länge einer Marathonstrecke oder der Kreiskonstanten Pi. Für diesen Zweck sieht PHP
Konstanten vor.

Konstanten sind Variablen ähnlich. Der Unterschied besteht darin, dass Konstanten einmalig bei
ihrer Definition ein Wert zugewiesen wird, der danach nicht mehr verändert werden kann.

Folgende Merkmale unterscheiden Konstanten von Variablen:

 Konstanten haben kein vorangestelltes $‐Zeichen im Bezeichner.

 Konstanten werden über die Funktion define() definiert, nicht durch eine einfache
Zuweisung wie bei Variablen.

 Alternativ können Sie Konstanten über das Schlüsselwort const definieren. Dabei wird der
Wert mit dem 9 Operator wie bei normalen Variablen zugewiesen.

 Konstanten können skalare Datenwerte, Arrays und skalare Ausdrücke enthalten.
Skalarwerte sind Ganzzahlen, Fließkommazahlen, Zeichenketten oder boolesche Werte.

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 41

 Seit PHP 5.5 können auch Arrays als Konstante gespeichert werden, allerdings nur über das

Schlüsselwort const.

 Seit PHP 5.6 sind konstante skalare Ausdrücke (Constant Scalar Expressions) möglich. Es
können feststehende Ausdrücke (Rechenoperationen, die immer gleich bleiben) als
Konstante definiert werden.

 Ab PHP 7.0 können Arrays auch über die Funktion define() deklariert und initialisiert wer‐
den. Dabei können indizierte, assoziative, ein‐ und mehrdimensionale Arrays (vgl. Kapitel 6)
definiert werden.

Konstanten definieren

define ("NAME", Wert);

Zur Definition von Konstanten verwenden Sie die Funktion define(). Sie müssen zwei
Argumente angeben: die Bezeichnung der Konstanten und den Wert, den Sie der Konstanten
zuweisen wollen. Der Name der Konstanten muss dabei in einfachen oder doppelten
Anführungszeichen stehen.

Definieren Sie Konstanten wie oben über define("PARAM", 5), verhält sich diese Case‐
sensitiv (PHP unterscheidet zwischen Groß‐ und Kleinbuchstaben), sprich: PARAM ist eine andere
Konstante als param. Falls Sie define() mit einem dritten Parameter true aufrufen, also
define("PARAM", 5, true), deaktivieren Sie die Case‐Sensitivität, in dem Fall wäre

PARAM und param dasselbe.

const NAME = Wert;

Alternativ können Sie Konstanten über das Schlüsselwort const definieren (seit PHP 5.3). Im

Gegensatz zu define() muss beim const der Name der Konstanten ohne Anführungszeichen
angegeben werden. Die Zuweisung der Werte geschieht über den Operator 9. Ein weiterer

Unterschied zu define() ist, dass über const definierte Konstanten im sogenannten Top‐
Level‐Scope definiert werden müssen, sie können weder in Funktionen, Schleifen, if‐Abfragen
oder try‐catch‐Blöcken definiert werden.

Ist eine Konstante einmal definiert, kann sie zur Laufzeit des PHP‐Skripts weder gelöscht noch
neu definiert werden.

Konventionen für Konstanten‐Bezeichnung

Schreiben Sie die Konstanten komplett in Großbuchstaben, dies entspricht gängigen Konventionen.
Unabhängig davon, ob Sie für normale Variablen die Schreibweise mit Unterstrichen oder den
CamelCase verwenden: Konstanten in Großbuchstaben sind im PHP‐Code deutlich zu erkennen,
Konstanten und Variablen sind so einfacher zu unterscheiden.

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 42 © HERDT‐Verlag

Beispiel: konstante.php

Im nachfolgenden Beispiel wird die Definition und Verwendung von Konstanten gezeigt.

 <?php

 define("SEK_TAG", 86400); // Anzahl der Sekunden pro Tag

 define("MIN_TAG", 24 * 60); // Anzahl der Minuten pro Tag

 define("GRUSS", "<hr><p>Ich wünsche Ihnen noch einen schönen
 Tag.
Herzliche Grüße...</p>");

 const NETTO = 100;
 const MWST = 0.19;
 const BRUTTO = NETTO + NETTO * MWST;

 define("WAEHRUNGEN", array('EURO', 'USD', 'GBP'));

 echo "<p>Ein Tag besteht aus " . MIN_TAG . " Minuten oder " .
 SEK_TAG . " Sekunden.</p>";

 echo "<p>Eine Woche besteht aus " . (7 * SEK_TAG) .
 " Sekunden</p>";

 echo "<p>Eine Woche besteht aus 7 * SEK_TAG Sekunden</p>";

 echo GRUSS;
 echo "GRUSS";

 echo "<p>Die Mehrwertsteuer beträgt " . MWST . "%.</p>";

 echo "<p> Die Bruttopreis berechnet sich zu " . BRUTTO . "%
 aus dem Nettopreis.</p>";

 echo "<hr><pre>";
 print_r(WAEHRUNGEN);
 echo "</pre>";
?>

 Einer Konstanten namens

SEK_TAG wird der Zahlenwert
86400 zugewiesen.

 Der Konstanten MIN_TAG wird
ebenfalls ein Zahlenwert
zugewiesen, in diesem Fall das
Ergebnis einer Rechenoperation.

 Einer Konstanten namens GRUSS
wird eine Zeichenkette
zugewiesen. Hierbei kann es sich
durchaus um komplette HTML‐
Bausteine handeln.

 Über const werden die
Konstanten NETTO, MWST und
BRUTTO definiert. Für die
BRUTTO‐Konstante wird ein
konstant skalarer Ausdruck
verwendet.

Ausgabe der Beispieldatei „konstante.php"

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 43

 Über define() wird die Array‐Konstante WAEHRUNGEN mit Währungsbezeichnungen
definiert.

 In dieser Zeile werden mehrere Zeichenketten und die definierten Konstanten MIN_TAG
und SEK_TAG ausgegeben. Die Konstanten werden mit den Zeichenketten konkateniert.

 Hier wird eine Rechenoperation mit der Konstanten SEK_TAG durchgeführt und das
Ergebnis ausgegeben. Zur Abtrennung von der Zeichenkette setzen Sie die Berechnung in
Klammern. Somit wird das Ergebnis zuerst berechnet und dann als Teil der Zeichenkette
ausgegeben.

 Ähnlich wie bei , nur dass hier die Konstante innerhalb der Zeichenkette (ohne Konka‐
tenation) angegeben wurde. Im Resultat erhalten Sie nur die Ausgabe des Konstanten‐
namens. Obwohl PHP Zeichenketten in doppelten Anführungszeichen parst, werden
Konstanten in Zeichenketten nicht ausgewertet. PHP kann Zeichen und Konstanten nicht
unterscheiden, zur Ausgabe einer Konstanten ist deswegen immer eine Konkatenation
notwendig. Das gleiche gilt für Rechenoperationen, die in Zeichenketten notiert sind. Auch

hier kann PHP nicht erkennen, ob es sich um das Zeichen handelt oder den Operator .

 Es wird eine Konstante verwendet, die aus einem HTML‐Block besteht. Es erfolgt die Aus‐
gabe der definierten Zeichenkette. In der Folgezeile steht die Konstante wieder in einer
Zeichenkette. Es erfolgt lediglich die Ausgabe des Konstantennamens, also die Zeichenfolge
"GRUSS".

 In dieser Zeile werden die Konstanten ausgegeben, die per const definiert wurden. Dort
können Sie auch erkennen, dass die Konstante BRUTTO den berechneten Wert
angenommen hat.

 Die Array‐Konstante WAEHRUNGEN aus Zeile  wird ausgegeben.

* *

Lizenziert für ComCave College GmbH

 4 Variablen und Operatoren

 44 © HERDT‐Verlag

4.5 Übungen

Übung 1: Werte von Variablen erkennen

Level

Zeit ca. 5 min

Übungsinhalte  Variablen

 Arithmetische Operatoren

 Zeichenkettenoperator

Übungsdatei ‐‐

Ergebnisdatei antworten‐4.php

1. Welche Ausgabe erhalten Sie bei den nachfolgenden Codezeilen?

Die Variablen haben folgende Werte:

$a = 7;
$b = "30 Euro";
$c = "!";

a) echo $a . $b . $c;

b) echo ""Text"";

c) echo "Text" . $a;

d) echo "Text" $a . $b;

e) echo $a + $b + $c;

f) echo $a * $b / $c;

g) echo ('\'Text\'' . $a ." Text " . $b);

Lizenziert für ComCave College GmbH

Variablen und Operatoren 4

 © HERDT‐Verlag 45

Übung 2: Mit Variablen, Operatoren und Konstanten arbeiten

Level

Zeit ca. 10 min

Übungsinhalte  Variablen

 Konstanten

 Arithmetische Operatoren

 Zeichenkettenoperator

 Bildschirmausgabe

Übungsdatei ‐‐

Ergebnisdatei buero.php

1. Erstellen Sie mit folgenden Angaben ein PHP‐Skript, das Sie unter dem Namen buero.php

speichern.

Variable Bezeichnung Variable Preis (netto)

$bezeichnung_tisch Schreibtisch $preis_tisch 1999.00 €

$bezeichnung_stuhl Bürostuhl $preis_stuhl 589.00 €

$bezeichnung_lampe Lampe $preis_lampe 29.00 €

$bezeichnung_pctisch Computertisch $preis_pctisch 999.00 €

Berechnen Sie den Gesamtpreis ($netto_gesamt) der eingekauften Artikel.

2. Berechnen Sie für den gerade berechneten Gesamtpreis den Bruttopreis ($brutto_gesamt)
mithilfe einer Konstanten namens MWST. Der Mehrwertsteuersatz, der zur Berechnung
verwendet wird, beträgt 19 %. Die verwendete Zeichenkette für die Währung Euro stellen Sie
bitte ebenfalls über eine Konstante (EURO) bereit.

3. Berechnen Sie zusätzlich die Bruttopreise aller Artikel.

4. Lassen Sie alle errechneten Werte in verständlicher Form mit Beschriftungen anzeigen.

Lösungsvorschlag „buero.php"

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 46 © HERDT‐Verlag

5
5. Kontrollstrukturen

Beispieldateien: Dateien aus Ordner Kap05

5.1 Kontrollstrukturen einsetzen

Zeilenweise Ausführung

Die Anweisungen in einem PHP‐Skript werden in der Reihenfolge ausgeführt, in der sie ange‐
geben sind, falls keine Anweisung einen Befehl enthält, der diese Reihenfolge ändert. Ein PHP‐
Skript wird in diesem Fall sequenziell, also Zeile für Zeile, abgearbeitet.

Warum sind Kontrollstrukturen notwendig?

Oft ist es erforderlich, dass eine oder mehrere Anweisungen …

 nur unter bestimmten Bedingungen durchgeführt werden sollen, z. B. ein Rabatt für einen

Einkauf wird nur gewährt, falls eine Mindestbestellmenge vorliegt;

 wiederholt durchgeführt werden sollen, z. B. beim Lesen aller oder gefilterter Einträge aus
einer Liste.

Um von der sequenziellen Abarbeitung der Befehle abzuweichen, setzen Sie Kontrollstrukturen
ein. Sie können gezielt den Ablauf des Skripts durch Bedingungen oder Schleifen steuern.

Anweisungen über Bedingungen auswählen

Eine Bedingung ist eine Möglichkeit, den Ablauf eines Skripts durch Entscheidungen zu beeinflus‐
sen. In einer Bedingung werden Ausdrücke verglichen. Das Ergebnis dieses Vergleichs kann dabei

entweder mit "Ja" (TRUE) oder mit "Nein" (FALSE) beantwortet werden. Hierbei können Sie mit
folgenden Operatoren arbeiten:

Vergleichsoperatoren

Diese Operatoren, auch relationale Operatoren genannt, vergleichen Ausdrücke miteinander und

liefern ein logisches Ergebnis, entweder TRUE (wahr) oder FALSE (falsch).

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 47

Operator Name Bedeutung Beispiel Ergebnis

== Gleich $a == $b
ergibt TRUE, wenn $a und $b gleich
sind.

$a = 4;
$b = 4.0;
$a == $b;

TRUE

!= oder <> Ungleich $a != $b
ergibt TRUE, wenn $a und $b ungleich
sind.

$a = 4;
$b = 4;
$a != $b;

FALSE

=== Identisch $a === $b
ergibt TRUE, wenn $a und $b gleich und
vom selben Datentyp sind.

$a = 4;
$b = 4.0;
$a === $b;

FALSE

!== Nicht
identisch

$a !== $b
ergibt TRUE, wenn $a und $b ungleich
oder nicht vom selben Datentyp sind.

$a = 4;
$b = 4.0;
$a !== $b;

TRUE

< Kleiner $a < $b
ergibt TRUE, wenn $a kleiner $b ist.

$a = 3;
$b = 4;
$a < $b;

TRUE

> Größer $a > $b
ergibt TRUE, wenn $a größer $b ist.

$a = 3;
$b = 4;
$a > $b;

FALSE

<= Kleiner
gleich

$a <= $b
ergibt TRUE, wenn $a kleiner oder
gleich $b ist.

$a = 4;
$b = 4;
$a <= $b;

TRUE

>= Größer
gleich

$a >= $b
ergibt TRUE, wenn $a größer oder gleich
$b ist.

$a = 5;
$b = 4;
$a >= $b;

TRUE

Im Unterschied zum Gleichheitsoperator (zwei Gleichheitszeichen) wird beim Identisch‐
Operator (drei Gleichheitszeichen) zusätzlich der Datentyp verglichen. Wird beispielsweise die

Zahl 1 mit der Zeichenkette "1" per 9 9 verglichen, ist die Überprüfung wahr. Werden die
beiden Werte hingegen per 9 9 9 verglichen, ist die Abfrage falsch, da die Datentypen nicht
übereinstimmen.

Vor allem bei 0 und 1, sowohl als Zahl als auch als Zeichenkette, und bei true und false
liefern Gleichheitsoperator und Identisch‐Operator unterschiedliche Ergebnisse, wie die folgende
Tabelle zeigt:

Vergleich Ergebnis

1 == "1" TRUE

TRUE == 1 TRUE

FALSE == 0 TRUE

1 === "1" FALSE

TRUE === 1 FALSE

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 48 © HERDT‐Verlag

Vergleich Ergebnis

FALSE === 0 FALSE

"1" === "1" TRUE

1 === 1 TRUE

TRUE === TRUE TRUE

FALSE === FALSE TRUE

Spaceship‐ und Null coalescing‐Operatoren

Der Spaceship‐Operator und der Null coalescing‐Operator sind neu in PHP 7.0. Diese Operatoren
sind eine Mischform aus einem Vergleichsoperator und einem Zuweisungsoperator, da sie beides
tun.

Operator Name Bedeutung Beispiel Ergebnis

<=> Spaceship $a <=> $b

gibt einen Integer zurück.

Falls $a < $b ist, ist der
Rückgabewert -1, 0 falls $a == $b
ist und 1, falls $a > $b ist.

$a = 6;
$b = 9;
$a <=> $b;

-1

?? Null
coalescing

$c = $a ?? $b
weist $c den Wert von $a zu, falls
die Variable $a initialisiert ist,
ansonsten den Wert von $b.

$b = 4;
$c = $a ?? $b

$c = 4

Spaceship‐Operator

$wert = $a <=> $b

 Vergleicht zwei Werte miteinander.

 Liefert einen integer‐Wert zurück.

 Ist der linke Wert kleiner als der rechte, ist der Rückgabewert -1.

 Sind beide Werte gleich, ist der Rückgabewert 0.

 Ist der linke Wert größer als der rechte, ist der Rückgabewert 1.

 Der Rückgabewert kann in einer Variablen gespeichert (hier $wert) und weiter
verarbeitet werden.

 Es wird keine Datentyp‐Prüfung durchgeführt. Beispiel: 6 <=> "6" wird als gleich erkannt
und liefert den Wert 0 zurück.

 Das Aussehen des Operators erinnert an ein Raumschiff und trägt deswegen auch den
Namen „Spaceship“.

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 49

Null coalescing‐Operator

Dieser Operator erinnert an einen ternären Operator (vgl. Abschnitt 5.3) und funktioniert auch
ähnlich.

$wert = $a ?? $b;

 Es wird geprüft, ob die Variable $a existiert.

 Falls ja, wird der Wert von $a der Variablen $wert zugewiesen.

 Falls nicht, wird Wert von $b ohne weitere Prüfung der Variablen $wert zugewiesen, auch
wenn $b selber nicht definiert ist.

 Das Verhalten entspricht der PHP‐Funktion isset(), welche ebenfalls prüft, ob eine
Variable deklariert und initialisiert ist.

 Es wird nur auf NULL‐Werte geprüft. Die Zahl $a=0; oder eine leere Zeichenkette $a="";
werden als gültig erkannt und dann der Variablen $wert zugewiesen.

Der Null coalescing‐Operator kann nützlich sein, um zu prüfen, ob eine Variable vorhanden ist,
und falls nicht, die im PHP‐Skript verwendete Variable mit einem sinnvollen Standardwert zu
versehen.

5.2 Die einfache if‐Anweisung

In PHP erreichen Sie auf verschiedene Arten eine Verzweigung des Programmablaufs. Die ein‐

fachste und häufig eingesetzte Variante ist die Bedingungsprüfung mit der if‐Anweisung. Wenn
die Bedingung erfüllt ist, dann wird der in Klammern angegebene Anweisungsblock ausgeführt.
Ist die Bedingung nicht erfüllt, wird der Anweisungsblock übersprungen.

Syntax und Bedeutung der if‐Anweisung

 Die if‐Anweisung beginnt mit dem reservierten

Wort if.

 Die Bedingung  steht in runden Klammern.

 Der Anweisungsblock  steht in geschweiften
Klammern.

 Die geschweiften Klammern sind optional. Falls diese fehlen und die Bedingung TRUE ist,
wird die Anweisung nur bis zum nächsten Semikolon ausgeführt.

 Als Bedingung ist ein logischer Ausdruck anzugeben, der einen der beiden Zustände TRUE
(wahr) oder FALSE (falsch) zurückliefert.

 Liefert die Bedingung TRUE zurück, werden die Anweisungen  ausgeführt. Ist die Bedin‐

gung FALSE, werden die Anweisungen  ignoriert.

 Nach dem Ende der if‐Anweisung werden alle weiteren Anweisungen unabhängig von der
Bedingung abgearbeitet.

Die auszuführenden Anweisungen  werden auch Anweisungsblock genannt, auch wenn sie nur
aus einer Anweisung bestehen.

if(Bedingung) { 
 Anweisungsblock; 
}

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 50 © HERDT‐Verlag

Beispiel: if‐1.php

 <?php

 $wochentag = "Samstag";

 if ($wochentag == "Samstag") {

 echo "<p>Heute ist Samstag.</p>";

 }

 echo "<hr><p>Die Woche beginnt mit dem Montag.</p>";
?>

 Der Variablen $wochentag wird
der Wert Samstag zugewiesen.

 Es folgt die Prüfung der Bedingung, ob
die Variable $wochentag den Wert

Samstag aufweist. Die Prüfung
ergibt TRUE, sodass der folgende
Anweisungsblock ausgeführt wird.

 Der Anweisungsblock in geschweiften
Klammern besteht im Beispielskript
nur aus einer Meldung, die auf dem
Bildschirm ausgegeben wird.

 Die geschweifte Klammer N beendet den Anweisungsblock.

 Die letzte Ausgabe wird unabhängig vom Ergebnis der Bedingungsprüfung auf dem Bild‐
schirm angezeigt, da sie nicht mehr im Anweisungsblock liegt.

Häufiger Fehler bei Bedingungsprüfungen

Ein häufiger Fehler ist, dass statt eines Vergleichsoperators mit zwei Gleichheitszeichen 9 9 nur
ein einzelnes Gleichheitszeichen 9 geschrieben wird (oft als Flüchtigkeitsfehler). Ein einzelnes
Gleichheitszeichen 9 ist jedoch ein Zuweisungsoperator und weist einer Variablen links vom 9

den Wert zu, der rechts nebem dem 9 steht. Die if‐Anweisung überprüft dann nicht den
Vergleich, sondern den zugewiesenen Wert. Ist der zugewiesene Wert nicht NULL, FALSE, 0,
'0' oder '' (leere Zeichenkette), ist die Überprüfung wahr, der if‐Zweig wird dann ausgeführt.

Ein nützlicher Trick ist es, Variable und Prüfwert zu vertauschen:

"Samstag" == $wochentag.
Für den Vergleich selbst spielt die Reihenfolge der einzelnen Argumente keine Rolle. Würde hier
versehentlich ein Gleichheitszeichen vergessen, würde von PHP eine Fehlermeldung ausgegeben
(parse error).

Beispiel: if‐2.php

Sie können auch mehrere if‐Anweisungen nacheinander verwenden. So können Sie flexibel
mehrere Werte oder Variablen prüfen und darauf individuell reagieren.

Anzeige der Beispieldatei „if‐1.php“

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 51

 <?php

 $muenzwurf = "Zahl"; // alternativ: "Kopf" oder "Rand"

 if ($muenzwurf == "Kopf") {
 echo "<p>Ihr Münzwurf zeigt: Kopf.</p>";
 $gewinn = 0.5;
 }

 if ($muenzwurf == "Zahl") {
 echo "<p>Ihr Münzwurf zeigt: Zahl.</p>";
 $gewinn = 0.75;
 }

 if ($muenzwurf == "Rand") {
 echo "<p>Ihr Münzwurf zeigt: Rand.</p>";
 $gewinn = 2.5;
 }

 if ($gewinn > 2) {
 echo "<p>Super! Das ist selten...</p>";
 }

 echo "<p>Sie haben $gewinn Schokoriegel gewonnen!</p>";
?>

 Der Variablen $muenzwurf wird
der Wert Zahl zugewiesen.
Experimentieren Sie mit dem
Skript: Tragen Sie als Wert zum

Testen auch einmal Kopf bzw.
Rand ein.

 Es wird geprüft, ob der

Variablenwert gleich Kopf ist.
Trifft die Bedingung zu, wird eine
Ausgabe sowie eine
Variablenzuweisung ($gewinn)
vorgenommen.

 Nach einer weiteren Prüfung, ob der Variablenwert gleich Zahl ist, erfolgt – falls die
Überprüfung erfolgreich ist – eine Ausgabe sowie eine weitere Variablenzuweisung

($gewinn).

 Es folgt eine dritte Prüfung, ob der Variablenwert gleich Rand ist. Bei erfolgreicher Prüfung
wird der angegebene echo‐Befehl ausgeführt. Es erfolgt zusätzlich eine weitere
Variablenzuweisung ($gewinn).

 Abschließend wird geprüft, ob die Variable $gewinn größer als 2 ist. In dem Fall erfolgt
eine weitere Ausgabe.

 Die letzte Ausgabe wird in jedem Fall ausgeführt. Sie gehört nicht mehr zu den vorherigen

if‐Anweisungen.

 Ausgabe der Beispieldatei „if‐2.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 52 © HERDT‐Verlag

if‐Anweisung ohne geschweifte Klammern

Beispiel: if‐1a.php

Die if‐Anweisung (wie auch andere Kontrollstrukturen) benötigt nicht zwingend geschweifte
Klammern MN, die den Anweisungsblock umschließen. Werden diese weggelassen, erkennt
PHP die Anweisung bis zum nächsten Semikolon als Anweisungsblock.

 <?php
 $wochentag = "Samstag";
 if ($wochentag == "Samstag")

 echo "<p>Heute ist Samstag.</p>";

 echo "<hr><p>Die Woche beginnt mit dem Montag.</p>";
?>

Im Gegensatz zum Beispiel „if‐1.php“ fehlen hier die geschweiften Klammern. Die Ausgabe ist jedoch identisch.

 Der Anweisungsblock der if‐Anweisung hat hier keine geschweiften Klammern MN.
Die vollständige Anweisung wird durch das Semikolon am Ende der Zeile  beendet.

 Diese Zeile befindet sich nicht mehr in der if‐Anweisung.

 Kontrollstrukturen ohne geschweifte Klammern MN sind schwieriger zu lesen, gerade wenn
keine Einrückungen vorgenommen werden. Um Fehler zu vermeiden, sollten geschweifte

Klammern MN verwendet werden.

5.3 Die if‐Anweisung mit else‐Zweig

Soll nicht nur ein Anweisungsblock durchgeführt werden, falls die Bedingung erfüllt ist, sondern

ein anderer, sofern die Bedingung nicht erfüllt ist, verwenden Sie die if-else‐Anweisung.

Syntax und Bedeutung der if-else‐Anweisung

 Die Alternative leiten Sie mit dem Schlüsselwort else ein.

 Danach folgen die alternativen Anweisungen.

 Falls die Bedingung erfüllt ist, wird Anweisungsblock 1
ausgeführt, sonst Anweisungsblock 2 (wenn‐dann‐sonst).

 Auch hier sind die geschweiften Klammern MN optional.

if(Bedingung) {
 Anweisungsblock 1;
} else {
 Anweisungsblock 2;
}

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 53

Beispiel: ifelse.php

Wenn die Variable $menge größer als 5 ist, soll eine Meldung ausgegeben werden. Ist $menge
kleiner als 5, soll eine alternative Meldung am Bildschirm angezeigt werden.

 <?php

 $menge = 4;
 echo "<p>Sie haben $menge Kilo bestellt.</p>";

 if ($menge > 5) {
 echo "<p>Glückwunsch, der Versand ist ab 5 Kilo
 kostenfrei.</p>";

 } else {
 echo "<p>Bei kleinen Mengen kostet der Versand leider drei
 Euro.</p>";
 }
?>

 Der Variablen $menge wird der Wert 4 zugewiesen.

 Es erfolgt die Bedingungsprüfung, ob $menge größer als 5 ist. Falls die Prüfung TRUE
ergibt, wird der folgende Anweisungsblock ausgeführt.

 Trifft die Bedingung nicht zu, wird der mit else eingeleitete alternative Anweisungsblock
ausgeführt.

Kurzschreibweise: Ternärer Operator

wenn Bedingung ? dann TRUE : sonst FALSE

PHP kennt eine Kurzschreibweise für die if-else‐Anweisung. Abfragen lassen sich damit
kürzer gestalten. Die Nachvollziehbarkeit und Verständlichkeit der Programmierung kann
allerdings durch Einsatz des ternären Operators leiden. Ternäre Operatoren sind schwieriger zu

lesen als if-else‐Anweisungen.

Beispiel: ternaeroperator.php

<?php
 $schalter = 1; // mögliche Werte: 1 / 0
 echo "<p>Das Licht ist " . ($schalter == 1 ? "AN" : "AUS") .
 "!</p>";
?>

Die runden Klammern um den ternären Operator sind notwendig, damit der ternäre Operator
ausgeführt und das entsprechende Ergebnis in den Satz eingefügt wird. Ohne die Klammern führt
PHP den ternären Operator nicht korrekt aus, da zwischen der Zeichenkette und dem ternären
Operator durch den .-Operator eine Konkatenation durchgeführt wird.

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 54 © HERDT‐Verlag

Verknüpfung von Bedingungen

In vielen Fällen ist eine Verknüpfung von zwei oder mehreren Bedingungen in einer if‐Anweisung
notwendig. Bei der Verknüpfung von Bedingungen können Sie mit folgenden logischen Operatoren
arbeiten.

Operator Name Bedeutung Beispiel Ergebnis

AND
&&

UND $a and $b ergibt TRUE, wenn sowohl
$a als auch $b ungleich 0 sind, ansonsten
wird FALSE zurückgegeben.

Sobald eine der Bedingungsprüfungen

FALSE ergibt, werden die weiteren Bedin‐
gungen nicht mehr geprüft.

$a = TRUE;
$b = FALSE;
$a AND $b;

FALSE

OR
||

ODER $a or $b ergibt TRUE, wenn mindes‐

tens eine der beiden Variablen ungleich 0
ist. Sobald eine der Bedingungsprüfungen

TRUE ergibt, werden die weiteren Bedin‐
gungen nicht mehr geprüft.

$a = TRUE;
$b = FALSE;
$a OR $b;

TRUE

XOR ENTWEDER
ODER

$a xor $b ergibt TRUE, wenn ent‐
weder $a oder $b ungleich 0 sind, aber
nicht, wenn beide ungleich 0 sind.

$a = TRUE;
$b = FALSE;
$a XOR $b;

TRUE

! NICHT !$a ergibt die Umkehrung des Wahr‐
heitswertes.

$a = FALSE;
!$a;

TRUE

Beispiel: bedingungen_verknuepfen.php

Durch Verknüpfung von Bedingungen können Sie z. B. prüfen, ob eine Altersangabe zwischen
zwei Werten liegt und entsprechend darauf reagieren.

 <?php
 $alter = 26;

 if ($alter >= 20 && $alter < 30) {
 echo "<p>Wert der Variablen \$alter: Zwischen 20 und
 29.</p>";

 } else {
 echo "<p>Wert der Variablen \$alter: NICHT zwischen 20 und
 29.</p>";
 }
?>

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 55

 Der Wert der Variablen

$alter wird überprüft. Damit
die Bedingung erfüllt ist und der

Anweisungsblock im if‐Zweig
ausgeführt wird, müssen beide
Bedingungen korrekt sein:

$alter >= 20 und $alter
< 30.

 In diesem Beispiel wird das &&‐Zeichen für die Und‐Verknüpfung verwendet. Alternativ kann
das Schlüsselwort AND verwendet werden: $alter >= 20 AND $alter < 30. Die
Verknüpfung selbst wäre dieselbe.

 Wenn allerdings nur eine oder gar keine Bedingung zutrifft, wird der Anweisungsblock des
else‐Zweiges ausgeführt.

5.4 Erweiterte if‐Anweisung mit elseif

Zusätzlich zu verschachtelten if‐
Anweisungen können Sie mit elseif
weitere Bedingungen prüfen. Da Sie

elseif beliebig oft einsetzen können,
ist es möglich, eine beliebige Anzahl von
zusätzlichen Bedingungen zu prüfen. Falls
keine der vorherigen Bedingungen

zutrifft, weder in der if‐ Anweisung
noch in weiteren elseif‐ Anweisungen,
wird der else‐Zweig aufgerufen.

 Für die einzelnen if‐Anweisungen und ebenso für die einzelnen elseif‐Anweisungen
gelten die gleichen Regeln wie bei einer einfachen if‐Anweisung.

 Sie können in einer if‐Anweisung beliebig viele elseif‐Anweisungen verwenden.

 Der else‐Zweig wird – wie bei der einfachen if‐Anweisung – nur dann ausgeführt, wenn
keine der vorherigen Bedingungen zutrifft.

Beispiel: if‐elseif.php

Im folgenden Beispiel wird ein Wochentag definiert. Durch eine if‐Anweisung wird nach fol‐
genden Regeln geprüft, ob es sich um einen Tag handelt, der dem Wochenende zuzurechnen ist
oder nicht.

 Samstag oder Sonntag führen zur Ausgabe, dass Wochenende ist.

 Freitag führt zur Ausgabe, dass bald Wochenende ist.

 Alle anderen Werte erzwingen eine Ausgabe, dass kein Wochenende ist.


Ausgabe der Datei „bedingungen_verknuepfen.php“

if (Bedingung 1) {
 Anweisungsblock 1;
} elseif (Bedingung 2){
 Anweisungsblock 2;
} [elseif (Bedingung n){
 Anweisungsblock n;
}] else {
 Anweisungsblock else;
}

Allgemeines Beispiel für eine if‐Anweisung mit elseif

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 56 © HERDT‐Verlag

 <?php

 $wochentag = "Freitag"; // testen mit "Mittwoch", "Freitag"
 und "Samstag"
 echo "<p>Verwendeter Wochentag: $wochentag.</p>";

 if ($wochentag == "Samstag" OR $wochentag == "Sonntag") {
 echo "<p>Es ist Wochenende.</p>";

 } elseif ($wochentag == "Freitag") {
 echo "<p>Bald ist Wochenende.</p>";

 } else {
 echo "<p>Es dauert noch bis zum Wochenende.</p>";
 }
?>

Der Variablen $wochentag
wird der Wert Freitag
zugewiesen.

 Wenn $wochentag den Wert
Samstag oder Sonntag aufweist,
erfolgt eine Ausgabe, dass
Wochenende ist. Danach ist die

Bearbeitung der if‐elseif-
else‐Anweisung beendet. Hier
wird das Schlüsselwort OR
verwendet. Das doppelte Pipe‐
Zeichen GG bewirkt dieselbe

Verknüpfung ($wochentag ==
"Samstag" ||
$wochentag == "Sonntag").

 Mit der elseif‐Anweisung wird ein weiterer möglicher Wert der Variablen $wochentag
geprüft. Ist der Wert der Variablen Freitag, erfolgt die Ausgabe, dass bald Wochenende ist.

Auch in diesem Fall ist die Bearbeitung der if‐elseif-else‐Anweisung beendet.

 Der else‐Zweig wird ausgeführt, wenn keine der vorhergehenden Bedingungen zutrifft.
In diesem Fall wird ausgegeben, dass es noch dauert, bis Wochenende ist.




5.5 Verschachtelte if‐Anweisungen

Sie haben die Möglichkeit, Bedingungen
und deren Anweisungsblöcke ineinan‐
der zu verschachteln. Ist die erste
Bedingung wahr, wird kontrolliert, ob
auch die nächste Bedingung zutrifft.
Trifft eine Bedingung nicht zu, wird der
alternative Zweig ausgeführt bzw. die
verschachtelte Auswahl übersprungen.

Anzeige der Beispieldatei „if‐elseif.php“ mit $wochentag =
Freitag

if (Bedingung 1) {
 Anweisungsblock 1;
} else {
 if (Bedingung 2) {
 Anweisungsblock 2;
 } else {
 if (Bedingung 3) {
 Anweisungsblock 3;
 } else {
 Anweisungsblock 4;
 }
 }
}

Allgemeines Beispiel für eine verschachtelte if‐Anweisung

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 57

 Für die einzelnen if‐Anweisungen gelten die gleichen Regeln wie bei einer einfachen if‐
Anweisung.

 Bei einer verschachtelten if‐Anweisung, beginnend mit einer öffnenden geschweiften
Klammer M, muss diese auch wieder durch eine schließende geschweifte Klammer N abge‐
schlossen werden. Die Verschachtelung erkennen Sie in der Abbildung an den eingerückten
Stufen.

 Der Anweisungsblock 1 wird abgearbeitet, wenn die Bedingung 1 zutrifft. Wenn sie nicht
zutrifft, erfolgt die Prüfung der Bedingung 2. Trifft diese zu, erfolgt die Abarbeitung des
Anweisungsblocks 2 usw. Trifft keine der Bedingungen zu, wird Anweisungsblock 4
abgearbeitet.

Rücken Sie verschachtelte if‐Anweisungen sorgfältig ein, damit die Programmstruktur auch
optisch erkennbar ist. Ohne entsprechende Einrückungen wird PHP‐Code schnell unübersichtlich.

Beispiel: verschachtelung.php

Im folgenden Beispiel wird ein Gepäckstück anhand seines Gewichts in eine Gepäckkategorie
einsortiert. Die Regeln lauten:

 Wiegt das Gepäckstück bis einschließlich 20 kg, gehört es zur Kategorie S;

 wiegt das Gepäckstück mehr (bis einschließlich 40 kg), gehört es zu Kategorie M;

 wiegt es mehr als 40 und maximal 60 kg, ist es in Kategorie L einzuordnen;

 ansonsten (über 60 kg) gehört es zur Kategorie XL.

 <?php

 $gewicht = 36; // Beispiel-Gewicht eines Gepäckstücks in kg
 echo "<p>Das Gepäck wiegt $gewicht kg. Es gehört zur
 Kategorie ";

 if ($gewicht <= 20) {

 echo "S (bis 20 kg) ";

 } else {

 if ($gewicht <= 40) {
 echo "M (bis 40 kg)";

 } else {

 if ($gewicht <= 60) {
 echo "L (bis 60 kg)";

 } else {
 echo "XL (über 60 kg)";
 }
 }
 }
 echo ".</p>";
?>

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 58 © HERDT‐Verlag

Der Variablen $gewicht wird
der Wert 36 zugewiesen.

 Wenn $gewicht kleiner oder
gleich 20 ist, wird die
nachfolgende echo‐Anweisung
 im if‐Zweig ausgeführt.
Danach ist die Bearbeitung der
if‐Anweisung beendet.

 Ist $gewicht größer als 20, wird im else‐Zweig nach einer zutreffenden Bedingung
gesucht. Da der else‐Zweig aus weiteren Prüfungen besteht, finden Sie weitere
Bedingungsprüfungen  ‐ .

5.6 Fallauswahl mit der switch‐Anweisung

Falls Sie per if‐Anweisung viele Überprüfungen der gleichen Variable durchführen, kann das je
nach Anzahl der Überprüfungen schwer zu verstehen und übersichtlich sein. Als Alternative steht
Ihnen in PHP die switch‐Anweisung zur Verfügung.

Bei der switch‐Anweisung bestimmt der Wert einer Variablen, welcher Anweisungsblock aus‐
geführt wird. Diese Vorgehensweise wird Fallauswahl oder Selektion genannt.

Syntax und Bedeutung der switch‐Anweisung

switch ($variable) {
 case Wert 1:
 Anweisungsblock 1;
 break;
 case Wert 2:
 Anweisungsblock 2;
 break;
 default:
 Anweisungsblock 3;
}

 Die Fallauswahl wird mit dem reservierten Wort switch eingeleitet.

 Danach folgt die Variable, deren Wert in den folgenden Bedingungsfällen überprüft wird.
Anschließend leitet das Zeichen M die Fallauswahl ein.

 Jede Auswahl wird durch das Schlüsselwort case (deutsch: Fall) eingeleitet, dem die
Angabe eines Wertes oder einer Bedingung folgt. Zur Trennung vom folgenden Anweisungs‐

block wird am Ende der case‐Angabe ein 5 gesetzt.

 Stimmt der Wert der Variablen mit einem der aufgeführten Auswahlwerte überein bzw.
ergibt die Bedingungsprüfung TRUE, dann wird der Anweisungsblock danach bis zur
Anweisung break ausgeführt. Die restlichen Auswahlblöcke werden nicht ausgeführt.


 Anzeige der Beispieldatei „verschachtelung.php“ bei
 $gewicht = 36

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 59

Die case‐Zweige der switch‐Anweisung werden der Reihe nach geprüft. Ergibt die Prüfung
eine Übereinstimmung, arbeitet PHP den direkt folgenden Anweisungsblock dieses case‐
Zweigs bis zur Anweisung break ab. Ist kein break am Ende eines case‐Zweiges an‐
gegeben, werden auch alle nachfolgenden case‐Blöcke ohne weitere Prüfung ausgeführt, bis
eine break‐Anweisung erfolgt.

 Stimmt der Wert der Variablen mit keinem der angegebenen Werte überein, wird der
Anweisungsblock nach der optionalen default‐Anweisung durchgeführt. Wird der

default‐Auswahlblock weggelassen, führt das Programm in diesem Fall keine Anweisun‐

gen innerhalb der switch‐Anweisung aus, sondern erst die nächste Anweisung nach dem
Ende der Fallauswahl.

 Die Fallauswahl wird nach dem Zeichen N beendet.

Beispiel: switch‐case‐1.php

Nachfolgend ein Beispiel, in dem der Wert einer Variablen geprüft wird:

 <?php

 $tag = "Samstag"; // Zum Testen Tag verändern

 // Test auf den Wochentag

 switch ($tag) {

 case "Samstag":

 echo "<p>Heute ist Samstag.</p>";

 break;

 case "Sonntag":

 echo "<p>Heute ist Sonntag.</p>";

 break;

 default:

 echo "<p>Schade, leider kein Wochenende.</p>";

 }

 ?>

 Der Variablen $tag wird der Wert

Samstag zugewiesen. Zum Testen
können Sie an dieser Stelle den Tag
ändern.

 In der switch‐Anweisung wird
angegeben, dass die Variable $tag
geprüft werden soll.

Ausgabe der Datei „switch‐case‐1.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 60 © HERDT‐Verlag

 +  Nacheinander werden die case‐Zweige abgearbeitet. In diesem Beispiel findet die

Prüfung auf Samstag und Sonntag statt. Die Prüfung entspricht einer if‐Anweisung
mit der Bedingung if($tag == "Samstag") usw. Die Prüfung, welche den Wert

TRUE liefert, ist in Zeile  zu finden. Der folgende Anweisungsblock wird bis zum Befehl

break ausgeführt. Die case‐Überprüfung in Zeile  und der default‐Block  wird

nicht mehr durchlaufen, da das break die komplette switch‐Anweisung beendet.

 Falls keiner der case‐Zweige zutrifft, wird der Anweisungsblock im default‐Zweig
ausgeführt.

Beispiel: switch‐case‐2.php

Bei einer switch‐Anweisung können Sie nicht nur auf einen bestimmten Wert prüfen, sondern

auch auf bestimmte Bedingungen. Statt dem Wert hinter dem case können Sie auch eine
Bedingung angeben. Ist das Ergebnis der Prüfung TRUE, wird dann der entsprechende case‐
Zweig ausgeführt. Damit die switch‐Anweisung korrekt arbeitet, leiten Sie für diesen Zweck das
switch mit dem Wert TRUE ein.

 <?php

 $gewicht = 36; // Beispiel-Gewicht eines Gepäckstücks in kg
 echo "<p>Das Gepäck wiegt $gewicht kg. Es gehört zur
 Kategorie ";

 switch (true) {

 case ($gewicht <= 20):
 echo " S (bis 20 kg)";
 break;

 case ($gewicht <= 40):
 echo " M (bis 40 kg)";
 break;

 default:
 echo " L (über 40 kg)";
 }

 echo ".</p>";
?>

 + Anders als im ersten Beispiel wird nicht auf einen bestimmten Wert, sondern auf eine

Bedingung geprüft.

 Die Prüfung von Gewicht 36 gibt im case $gewicht <= 40 ein TRUE zurück. Der
folgende Anweisungsblock wird ausgeführt und die switch‐Anweisung durch das break
beendet.

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 61

Bei einer switch‐Anweisung können Sie alle denkbaren Fälle prüfen. Dies ist möglich, da in den

case‐Zweigen der zu testende Wert auf Gleichheit geprüft wird:

 numerische Werte, z. B. case 5: bei der Prüfung, ob eine Variable den Wert 5 hat

 Zeichenketten, z. B. case "Spanischer Rotwein": bei der Prüfung, ob der Wert

einer Variablen identisch mit der Zeichenkette "Spanischer Rotwein" ist

 einfache und verknüpfte Bedingungen, z. B. case ($a > 10 && $a <= 20): bei der
Prüfung, ob die Variable $a einen Wert zwischen 10 und 20 aufweist.

Beispiel: switch‐case‐3.php

Darüber hinaus gibt es die Möglichkeit, mehrere Werte gleichzeitig zu prüfen. Geben Sie hierfür

das Schlüsselwort case mehrfach mit den Werten an, welche Sie prüfen möchten.

 <?php

 $note = 3;
 switch ($note) {

 case 1: case 2: case 3: case 4:
 echo "<p>Test bestanden.</p>";
 break;

 case 5:
 case 6:
 echo "<p>Test leider nicht bestanden.</p>";
 break;

 case "nicht bewertet":
 echo "<p>Der Test wurde abgebrochen und daher nicht
 bewertet.</p>";
 break;

 default:
 echo "<p>Ich kann keine ganze Note zwischen 1 und 6
 erkennen.</p>";
 }
?>

 Der Variablen $note wird der Wert 3 zugewiesen. Zum Testen können Sie die Wert‐
zuweisung ändern.

 ‐  Im ersten case‐Zweig der switch‐Anweisung werden mehrere Fälle zusammengefasst.
Notieren Sie die einzelnen zu prüfenden Fälle einfach hintereinander  oder
untereinander , jeweils komplett mit dem folgenden 5. Trifft einer der angegebenen
Fälle zu, wird der folgende Anweisungsblock ausgeführt.

 An dieser Stelle erfolgt die Prüfung, ob die Variable $note mit der angegebenen

Zeichenkette "nicht bewertet" übereinstimmt.

 Die switch‐Anweisung bietet in diesem Beispiel einen optionalen default‐Zweig,
dessen dazugehöriger Anweisungsblock nur dann ausgeführt wird, wenn die Variable

$note einen anderen Inhalt hat als 1, 2, 3, 4, 5, 6 oder nicht bewertet.

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 62 © HERDT‐Verlag

5.7 Schleifen

Schleifen verwenden

Um einen bestimmten Teil des Programms mehrfach auszuführen bzw. zu wiederholen, benöti‐
gen Sie Schleifen. Durch die Verwendung von Schleifen sparen Sie Programmcode und können
variabel festlegen, wie oft oder bis zum Eintreffen welcher Bedingung die Schleife durchlaufen
werden soll.

Folgende Schleifen gibt es in PHP:

 while‐ bzw. do-while-Schleife:
Wenn Ihnen als Programmierer nicht bekannt ist, wie oft eine Anweisung wiederholt wer‐
den soll, bzw. Sie eine Schleife so lange ausführen möchten, bis eine bestimmte Bedingung

eingetreten ist, verwenden Sie die while‐ bzw. do-while‐Schleife.

 for‐Schleife:
Wenn Sie die genaue Anzahl kennen oder diese vorher über PHP ermitteln können, wie oft

eine Anweisung wiederholt werden soll, verwenden Sie die for‐Schleife.

5.8 Mit der while‐Schleife arbeiten

In einer while‐Schleife prüft PHP zu Beginn die vorgegebene Bedingung und führt den angegebe‐
nen Anweisungsblock so lange aus, bis die Bedingung nicht mehr erfüllt ist. Diese Prüfung wird

automatisch vor jedem Durchlauf wiederholt. Ergibt der Test der Bedingung den Wert TRUE, wird
die Schleife durchlaufen. Liefert die Bedingung den Wert FALSE zurück, werden die Anweisungen
der Schleife übersprungen und die Abarbeitung des Programms wird nach der Schleife fortgesetzt.

Eine Prüfung vor der Ausführung des Anweisungsblocks wird als kopfgesteuert bezeichnet. Ergibt
bereits die erste Bedingungsprüfung den Wert FALSE, wird der Anweisungsblock gar nicht aus‐
geführt, d. h., eine while‐Schleife kann 0 Mal bis unendlich oft (sogenannte Endlosschleife)
ausgeführt werden.

Syntax und Bedeutung der while‐Schleife

 Das Schlüsselwort while leitet die while‐Schleife ein. In
runden Klammern wird die Bedingung angegeben, die vor
der Abarbeitung überprüft wird.

 Ist der Rückgabewert der Bedingung TRUE, wird der Anweisungsblock im Schleifenkörper
ausgeführt.

 Nach der letzten Anweisung des Anweisungsblocks bzw. mit Erreichen der schließenden
geschweiften Klammer springt PHP zum Anfang der Schleife zurück und überprüft erneut die

Bedingung. Ist das Ergebnis der Bedingungsprüfung TRUE, wird der Anweisungsblock erneut
ausgeführt.

 Diese Schritte werden so lange wiederholt, bis die Auswertung der Bedingungsprüfung am
Beginn der Schleife den Wert FALSE liefert. Die Schleife wird dann verlassen und der PHP‐
Code nach der Schleife weiter abgearbeitet.

while(Bedingung) {
 Anweisungsblock;
}

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 63

Beispiel: while.php

 <?php

 $zahl = 1;

 while ($zahl <= 100) {

 echo "$zahl
";

 $zahl = $zahl + $zahl;

 }
?>

 Der Startwert der Variablen $zahl wird auf den
Wert 1 festgelegt.

 Die Bedingung legt fest, dass die while‐Schleife
wiederholt werden soll, so lange der Wert der

Variablen $zahl kleiner oder gleich 100 ist.
Bedenken Sie, dass die Schleife nicht ein einziges
Mal ausgeführt wird, wenn der Wert der Variablen
bereits beim ersten Schleifendurchlauf größer als

100 sein sollte.

 In jedem Schleifendurchlauf erfolgt die Ausgabe

der Variablen $zahl.

 Der Variablen $zahl wird an dieser Stelle ein neuer Wert zugewiesen, im Beispiel wird sie
verdoppelt.

 Die while‐Schleife wird durch die schließende Klammer N beendet. Nach jedem Schleifen‐
durchlauf wird die Bedingung erneut geprüft . Der Anweisungsblock in der Schleife wird so

lange ausgeführt, bis die Bedingungsprüfung FALSE ergibt. Damit ist dann die Schleife
beendet und die Abarbeitung des Skripts wird nach der Schleife fortgesetzt.

Häufige Fehler beim Einsatz von Schleifen

Die in diesem Abschnitt beschriebenen Fehler ergeben keine Fehlermeldungen, sondern einzig
ein unerwartetes Verhalten des Programms. Es handelt sich um logische Fehler:

 Es kann passieren, dass der Variablen, die geprüft werden soll, ein Wert zugewiesen wurde,

bei dem die Bedingungsprüfung am Anfang der Schleife gleich beim ersten Schleifendurch‐

lauf den Wert FALSE ergibt. Das heißt, die Schleife wird nicht ein einziges Mal ausgeführt,
sondern übersprungen.

Endlosschleifen vermeiden

Schleifen bergen grundsätzlich die Gefahr, dass sie durch eine falsche Logik in der Programmie‐
rung in eine Endlosschleife laufen. Dies wird Ihnen nicht als PHP‐Fehler gemeldet. Der Aufruf der
Datei ist möglich, das Skript bricht ab, wenn die vom Server erlaubte Laufzeit erreicht ist (diese

wird in der php.ini über den Parameter max_execution_time bestimmt und ist standard‐
mäßig auf 30 Sekunden eingestellt). Aber auch das „Volllaufen“, also das Überschreiten des
erlaubten Speicherlimits (Allowed memory size, wird über den Parameter memory_limit in
der php.ini konfiguriert) kann Ihr Skript zum „Absturz“ bringen, wenn z. B. durch zu viele
Schleifendurchläufe große Datenmengen verarbeitet werden sollen. Dies kann zum Absturz Ihres
Browsers oder sogar des Webservers führen.

Anzeige der Beispieldatei „while.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 64 © HERDT‐Verlag

Endlosschleifen können Sie nur durch eine sorgfältige Programmierung vermeiden. Eine Möglich‐
keit ist z. B., in einer Hilfsvariablen die Anzahl der Durchläufe mit zu zählen und ab einer bestimm‐
ten Anzahl von Durchläufen die Schleife abzubrechen (vgl. Abschnitt 5.10).

Mit der do-while‐Schleife arbeiten

Im Unterschied zur while‐Schleife, die die Bedingung für die Wiederholung am Anfang hat,

wird in der do-while‐Schleife die Bedingung erst nach der letzten Anweisung in der Schleife
überprüft. Man spricht deshalb von einer fußgesteuerten Schleife. Daraus folgt auch, dass der

Anweisungsblock immer mindestens einmal ausgeführt wird. Auch hier gilt wie bei der while‐
Schleife: Liefert die Bedingung einen Wert TRUE zurück, wird die Schleife erneut durchlaufen,
ansonsten wird sie verlassen.

Syntax und Bedeutung der do-while‐Schleife

 Das Schlüsselwort do leitet die Schleife ein.

 Die Anweisungen im Schleifenkörper werden auf jeden Fall
mindestens einmal ausgeführt.

Am Ende der Schleife wird die Bedingung der Schleife über

das Schlüsselwort while ausgewertet. Die Bedingung wird
in runden Klammern angegeben.

 Trifft die Bedingung zu, wird die Schleife erneut ausgeführt.

5.9 Mit der for‐Schleife arbeiten

Im Unterschied zur while‐Schleife, die so oft durchlaufen wird, bis der Test der Bedingung
FALSE ergibt, wird in der for‐Schleife genau angegeben, wie oft die Schleife durchlaufen
werden soll. Bei der for‐Schleife kann berechnet werden:

 die Anzahl der Wiederholungen oder

 Beginn und Ende der Wiederholung.

Übergeben werden der Start‐ und Endwert sowie die Bedingung, wie der Endwert erreicht
werden soll.

Syntax und Bedeutung der for‐Schleife
for (Initialisierung; Bedingung; Reinitialisierung) {
 Anweisungsblock;
}

do {
 Anweisungsblock;
}
while (Bedingung);

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 65

 Die for-Schleife beginnt mit dem reservierten Schlüsselwort for.

 Mit der Anweisung Initialisierung wird der Anfangswert für die Schleife festgelegt.

 Die Anweisung Bedingung legt fest, unter welchen Konditionen die Schleife durchlaufen
wird. Diese Bedingung, die vor jedem Durchlauf abgefragt wird, liefert einen Wert TRUE oder
FALSE zurück. Ist der Wert TRUE, wird die Schleife durchlaufen. Andernfalls wird das
Programm mit den Anweisungen nach der for‐Schleife fortgesetzt. Die Bedingung überprüft
den Initialwert noch vor dem ersten Durchlauf. Ist das Ergebnis dieser ersten Überprüfung
bereits mit den Initialwerten FALSE, wird die Schleife nicht durchlaufen.

 Die Anweisung Reinitialisierung legt fest, wie die Variable verändert werden soll,
die in der Bedingung geprüft wird. Diese Veränderung geschieht am Ende der Schleife, das

bedeutet, erst beim zweiten Durchlauf der Schleife ist der Wert, der in der Initialisie-
rung gesetzt wurde, verändert.

 Die drei Anweisungen werden jeweils durch ein Semikolon voneinander getrennt.

Beispiel: for.php

Die Schrift eines angezeigten Beispieltextes wird mithilfe einer Schleife schrittweise verkleinert.

 <?php

 for ($groesse = 25; $groesse >= 10; $groesse -= 5) {

 echo "<p style='font-size:" . $groesse . "px'>Schriftgröße
 $groesse px</p>";

 }
?>

 Der Startwert der for‐Schleife wird über die

Zuweisung des Wertes 25 an die Variable
$groesse festgelegt. Die Bedingung besagt,
dass die Schleife durchlaufen werden soll, solange
der Wert der Variablen $groesse größer oder
gleich 10 ist. Nach jedem Durchlauf wird der

Wert um 5 verringert.

 Die Variable $groesse steuert über ihren Wert
die Schriftgröße der betreffenden Zeile und wird

per echo ausgegeben.

 Das Ende der for‐Schleife ist erreicht. Durch die
Reinitialisierung wird der Wert der

Variablen $groesse um 5 subtrahiert und
springt wieder zurück zur Zeile . Dort wird er‐
neut geprüft, ob die Schleife nochmals durchlaufen
werden muss.

 Anzeige der Beispieldatei „for.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 66 © HERDT‐Verlag

Beispiele für Operatoren in for‐Schleifen

Bei der Arbeit mit einer for‐Schleife können Sie z. B. mit folgenden Operationen arbeiten:

Bedingung in der for‐Schleife Werte von $i

for ($i = 1; $i <= 5; $i++) 1, 2, 3, 4, 5

for ($i = 1; $i < 5; $i++) 1, 2, 3, 4

for ($i = 15; $i >= 10; $i--) 15, 14, 13, 12, 11, 10

for ($i = 15; $i > 10; $i--) 15, 14, 13, 12, 11

for ($i = 0; $i < 100; $i = $i + 10) 0, 10, 20, 30, 40, 50,
60, 70, 80, 90

for ($i = 1; $i <= 10; $i = $i + 1.2) 1, 2.2, 3.4, 4.6, 5.8,
7, 8.2, 9.4

5.10 Schleifen abbrechen

Schleifenabbruch mit break

Nicht immer ist es notwendig, eine for‐, while‐ oder do-while‐Schleife so lange zu durch‐
laufen, bis die definierte Bedingung ein FALSE ergibt und damit die Schleife beendet wird. Auch
innerhalb des Schleifendurchlaufs können andere Kriterien geprüft werden, die das weitere Durch‐
laufen der Schleife überflüssig machen.

Beispiel: break.php

 <?php
 $budget = 50;
 $einzelpreis = 9;

 $menge = 1;

 while ($menge <= 15) { // Idealfall: 15 Stück kaufen
 $gesamtpreis = $einzelpreis * $menge;

 if ($gesamtpreis > $budget) { // Budget erschöpft? Wenn
 ja: Abbruch
 echo "<p>Ihr Budget ist leider
 erschöpft.</p>";

 break;
 }
 echo "<p>$menge Stück: $gesamtpreis Euro.</p>";

 $menge++;
 }
?>

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 67

 Der Startwert der while‐Schleife wird über die
Zuweisung des Wertes 1 an die Variable $menge
festgelegt. 

 Die Bedingung besagt, dass die Schleife durch‐
laufen werden soll, solange der Wert der Variablen
$menge kleiner oder gleich 15 ist.

 Die Schleife soll allerdings nur ausgeführt werden,
bis der Gesamtpreis das zur Verfügung stehende
Budget übersteigt. Wenn das passiert, wird die
Schleife durch den Befehl break  im Anschluss
an eine Meldung abgebrochen.

Die Variable $menge wird bei jedem Schleifen‐

durchlauf um eins erhöht ($menge++).

Vorzeitiger Sprung zum nächsten Schleifendurchlauf mit continue
In Schleifen wird der PHP‐Code vom Schleifenkopf bis zum Schleifenende vollständig durchlaufen.
Es ist jedoch denkbar, dass bei einer bestimmten Bedingung das Ausführen des Codes bis zum
Schleifenende überflüssig ist, allerdings sollen weitere Schleifendurchläufe ausgeführt werden.

Für diesen Fall steht das Schlüsselwort continue zur Verfügung. Damit beenden Sie einen ein‐
zelnen Schleifendurchlauf, die Schleife wird mit dem nächsten Schleifendurchlauf fortgesetzt. Bei
for‐Schleifen wird hier auch die Anweisung der Reinitialisierung ausgeführt, auch wenn
das Ende der Schleife noch nicht erreicht wurde.

Beispiel: continue.php

 <?php
 $zaehler = 5;

 for ($nenner = -2; $nenner <= 2; $nenner++) {

 if ($nenner == 0) {
 echo "<p>Division durch 0 ist verboten.</p>";

 continue;
 }
 $ergebnis = $zaehler / $nenner;

 echo "<p>$zaehler / $nenner = " . $ergebnis . "</p>";
 }
?>

Anzeige der Beispieldatei „break.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 68 © HERDT‐Verlag

 In einer for‐Schleife sollen die Ergebnisse
einer Division von $zaehler und
$nenner berechnet und ausgegeben
werden. $zaehler besitzt mit 5 einen
festen Wert. Der Wert der Variablen

$nenner wird durch die for‐Schleife
verändert (von -2 bis 2).

 Um keinen schwerwiegenden Fehler
(Division durch 0) auszulösen, soll die
Division nicht durchgeführt werden, wenn

die Variable $nenner den Wert 0 aufweist.
In dem Fall wird der aktuelle Schleifen‐

durchlauf nach einer echo‐Anweisung per
continue  beendet.

 Beachten Sie, dass die Reinitialisierung $nenner++ auch ausgeführt wird, wenn
das Schleifenende noch nicht erreicht ist. Die Variable $nenner wird um 1 hochgezählt und
die Schleife mit diesem Wert fortgesetzt.

 Sofern der aktuelle Schleifendurchlauf nicht abgebrochen wurde, erfolgt an dieser Stelle die
Berechnung und anschließend die Ausgabe des Ergebnisses.

 Wissenstest: Variablen bis Kontrollstrukturen

5.11 Übungen

Übung 1: Kontrollstrukturen in PHP: switch

Level

Zeit ca. 5 min

Übungsinhalte  switch‐Anweisung

 case und break

Übungsdatei ‐‐

Ergebnisdatei bewertung_switch.php

1. Erstellen Sie ein PHP‐Skript (bewertung_switch.php), das die Bewertung eines Tests in Text‐

form ausgibt. Realisieren Sie diese Aufgabe mithilfe einer switch‐Auswahlschleife. Legen
Sie die erreichte Punktzahl innerhalb des Skripts fest. Die Bedeutung der Punkte lautet:

10 Punkte: Sehr gut 7 Punkte: Ausreichend
9 Punkte: Gut weniger als 7: Leider zu wenige
8 Punkte: Befriedigend Punkte erreicht

Anzeige der Beispieldatei „continue.php“

Lizenziert für ComCave College GmbH

Kontrollstrukturen 5

 © HERDT‐Verlag 69

Übung 2: Kontrollstrukturen in PHP: for

Level

Zeit ca. 10 min

Übungsinhalte  switch‐Anweisung

 case und break

 for‐Schleife

Übungsdatei ‐‐

Ergebnisdatei bewertung_switch‐2.php

1. Erweitern Sie das Programm bewertung_switch.php, indem Sie eine Schleife programmie‐

ren, die automatisch die Bewertung des Tests mithilfe einer for‐Schleife für erreichte
Punktzahlen von 10 bis 0 Punkte ausgibt. Speichern Sie die Datei unter dem Namen
bewertung_switch‐2.php.

Anzeige der Ergebnisdatei „bewertung_switch‐2.php“

Lizenziert für ComCave College GmbH

 5 Kontrollstrukturen

 70 © HERDT‐Verlag

Übung 3: Kontrollstrukturen in PHP: while und do-while

Level

Zeit ca. 15 min

Übungsinhalte  while‐Schleife

 do-while‐Schleife

Übungsdatei ‐‐

Ergebnisdatei while_do‐while.php

1. Entwerfen Sie ein Programm (while_do‐while.php), das untereinander die Zahlen 1 ‐ 5

ausgibt. Weisen Sie einer Variablen $zahl den Startwert 1 zu und verwenden Sie eine
while‐Schleife. Realisieren Sie die Aufgabe anschließend zusätzlich in derselben Datei mit

einer do-while‐Schleife.
Wenn Sie die Ausgaben von 1 ‐ 5 realisiert haben, weisen Sie der Variablen $zahl den
Startwert 20 zu. Vergleichen Sie das Verhalten der while‐Schleife mit dem der do-while‐
Schleife.

Anzeige der Ergebnisdatei „while_do‐while.php“ mit Startwert 1 (links) und Startwert 20 (rechts)
für die Variable $zahl

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 71

6
6. Arrays

 Beispieldateien: Dateien aus Ordner Kap06

6.1 Grundlagen zu Arrays

Was sind Arrays?
Bislang wurden in den Beispielen Variablen verwendet, die jeweils nur einen einzelnen Wert
speichern. In diesem Kapitel lernen Sie Arrays kennen. Arrays sind spezielle Variablen, die nicht
nur einen, sondern beliebig viele Werte (auch unterschiedlichen Datentyps) speichern können.
Im Sprachgebrauch von Entwicklern ist die englische Bezeichnung „Arrays“ üblich. Mitunter
werden Arrays auch Feldvariablen oder kurz Felder genannt.

Arrays sind hilfreich für die reihenweise Verarbeitung von Daten. Stellen Sie sich vor, eine
Berechnung liefert Ihnen 20 Ergebnisse. Diese möchten Sie für die spätere Weiterverarbeitung
zwischenspeichern. Mit den bislang bekannten Datentypen boolean, integer, float oder string
können Sie pro Variable nur einen Wert speichern. Um 20 Ergebnisse zu speichern, bräuchten Sie
nun 20 einzelne Variablen ($ergebnis1, $ergebnis2, $ergebnis3, $ergebnis4 ...).
Dies ist umständlich und arbeitsaufwändig. In Situationen, in denen Sie die Anzahl der einzelnen
Ergebnisse nicht kennen, wäre das Zwischenspeichern mit Einzelvariablen ebenfalls sehr um-
ständlich zu lösen. Arrays bieten hier die Lösung: alle Ergebnisse können in einer Array-Variablen
gespeichert werden.

Nicht nur für das Speichern von zusammengehörigen Werten, sondern auch für die weitere
Verarbeitung bieten sich Arrays an. Arrays können einfach mit Schleifen durchlaufen werden.
Das ermöglicht eine schnelle Verarbeitung vieler Werte, ohne dass Sie für jeden einzelnen Wert
eine einzelne Variable definieren müssen.

Bildlich können Sie sich Arrays wie eine Kommode mit vielen Schubladen vorstellen. Die Kom-
mode wäre das Array, die einzelnen Schubladen die einzelnen Array-Einträge – wobei in jeder
Schublade auch wieder eine kleine Kommode mit weiteren Schubladen sein kann (mehrdimensio-
nales Array, siehe nächste Seite).

Lizenziert für ComCave College GmbH

 6 Arrays

 72 © HERDT-Verlag

Der Zugriff auf die einzelnen Ergebnisse erfolgt jeweils über ihre Position innerhalb des Arrays.

$ergebnis1 $ergebnis2 $ergebnis3

1.2

…
2.4 3.6

Ergebnisse einzeln in einfachen Variablen speichern

$ergebnis

 1.2 2.4 3.6 …

Alle Ergebnisse in einem Array speichern

Arrays in PHP
Jedes Element eines Arrays besteht aus einem Index bzw. Schlüssel und einem Datenwert. Dabei
gibt es zwei Sorten von Arrays, die sich im Aufbau unterscheiden, aber auch dadurch, wie Sie auf
die einzelnen Einträge in einem Array zugreifen können:

 Im numerisch indizierten Array werden die einzelnen Werte (value) innerhalb des Arrays

über einen Index, eine fortlaufende Nummer, angesprochen.
 Im assoziativen Array werden die einzelnen Werte (value) innerhalb des Arrays über einen

eindeutigen Schlüssel, key genannt, angesprochen.

Aufbau von Arrays
Arrays können ein- oder mehrdimensional sein:

 In einem eindimensionalen Array legen Sie eine Liste von Daten ab. Sie können beispiels-

weise eine Liste von Städten darstellen.
 Wenn Sie zusammengehörige verschachtelte Daten wie z. B. eine Liste von Ländern und

dazugehörigen Werten wie Hauptstädten, Landessprache etc. abbilden möchten, können Sie
dies mit einem mehrdimensionalen Array tun. Dabei ist es unerheblich, ob es sich um zwei
oder mehrere Dimensionen handelt. Mehrdimensionale Arrays sind Array-Variablen, in
denen einzelne Einträge selbst Array-Variablen sind.

Eigenschaften von Arrays
 In PHP können die Werte von Arrays von beliebigen Datentypen sein.
 Falls Sie keinen Index vergeben, erzeugen Sie automatisch ein numerisch indiziertes Array,

die Array-Indizes beginnen standardmäßig mit 0. Das erste Element hat dementsprechend
den Index 0, das zweite Element hat den Index 1, das dritte Element hat den Index 2 und so
weiter. Der Index eines Arrays mit n Elementen reicht somit von 0 bis n - 1. Der Index
eines Arrays mit vier Elementen reicht somit von 0 - 3.

 Arrays müssen in PHP nicht explizit definiert werden. Sie erzeugen ein Array, in dem Sie
einer Variablen per 9 und dem Schlüsselwort array() die Array-Werte zuweisen –
alternativ über die Kurzschreibweise 9 und [](doppelte eckige Klammern). PHP weist
dann automatisch den Datentyp array zu.

 Die Anzahl der Array-Einträge muss vorher nicht angegeben werden. Die Größe eines Array
hängt von der Anzahl der Einträge ab, mit der Sie das Array erzeugen. Außerdem können Sie
nach der Erstellung dem Array zusätzliche Elemente hinzufügen und einzelne Elemente
löschen.

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 73

6.2 Indizierte eindimensionale Arrays erstellen

Ein indiziertes Array anlegen
Ein Array erzeugen Sie in PHP über das Schlüsselwort array(). In einem Schritt können Sie
dem Array einfach und schnell die Werte zuweisen.

Syntax und Bedeutung der array()-Funktion

$feld = array(Wert1, Wert2, Wert3, ...);

 Um ein Array zu erzeugen, verwenden Sie das Schlüsselwort array().
 Über den Zuweisungsoperator 9 weisen Sie das Array der Variablen $feld zu.
 Die einzelnen Array-Einträge notieren Sie innerhalb der runden Klammern.
 Die einzelnen Werte werden durch Kommata voneinander getrennt.
 integer, double und boolean-Werte werden ohne, string (Zeichenketten) mit

Anführungszeichen angegeben.
 Die Indizierung der einzelnen Elemente erfolgt automatisch in der Reihenfolge der Angabe.

Beispiel

$staedte = array("Frankfurt", "Berlin", "Bern");

Es befinden sich drei Werte in dem Array $staedte: Frankfurt, Berlin und Bern. Die
Reihenfolge, in der die Werte zugewiesen worden sind, bestimmt die automatische Indizierung
der Werte. Im Array ist dann jeder Wert mit einem Index fest verknüpft, also Index 0 mit
Frankfurt usw.

Index 0 1 2

Wert Frankfurt Berlin Bern

Auf indizierte Arrays zugreifen
Um auf ein bestimmtes Element in einem Array zuzugreifen, wird der Index des einzelnen Wertes
verwendet. Bei numerisch indizierten Arrays ist dies der automatisch erzeugte fortlaufende
Index. Der Index wird dabei in eckigen Klammern direkt hinter dem Variablennamen angegeben:

$staedte[Index];

Beispiel

echo $staedte[2];

Hier wird der Eintrag der Array-Variablen $staedte mit dem Indexwert 2 ausgegeben.

Lizenziert für ComCave College GmbH

 6 Arrays

 74 © HERDT-Verlag

6.3 Assoziative eindimensionale Arrays erstellen

Ein assoziatives Array anlegen
Eine andere Art von Arrays sind assoziative Arrays. Bei diesen werden für den Zugriff keine
fortlaufenden Indizes benutzt, sondern Schlüssel, über deren Wert auf die einzelnen Werte zuge-
griffen werden kann. Der Vorteil assoziativer Arrays besteht darin, dass Sie zwei Informationen
(ein Informationspaar) ablegen können. Die Schlüssel sind frei wählbar und tragen häufig eine
Bedeutung – im Gegensatz zu einem numerischen und meist nicht bedeutungstragenden Index.

Syntax der array()-Anweisung bei assoziativen Arrays

Auch die assoziativen Arrays lassen sich über die array()-Anweisung füllen:

$feld = array(Schlüssel1 => Wert1, Schlüssel2 => Wert2, ...);

Beispiel:
$hauptstaedte = array("Schweiz" => "Bern",
 "Frankreich" => "Paris");

 Die array()-Anweisung beginnt mit dem reservierten Wort array.
 Der Variablen werden die einzelnen Wertpaare, bestehend aus Schlüssel (key) und Wert

(value), übergeben. Die einzelnen Wertepaare werden durch Kommata voneinander
getrennt angegeben.

 Die Zuweisung von Schlüssel und Wert erfolgt über die Zeichenfolge ”. Dabei steht der
Schlüssel links, der Wert rechts vom ”. Diese Zuweisung wird auch als Indizierung
bezeichnet.

 Mögliche Datentypen für den Schlüssel sind integer und string. Ein double als Schlüssel wird
zu einem integer umgewandelt, null zu einer leeren Zeichenkette. Arrays und Objekte sind
als Schlüssel nicht erlaubt.

 Zeichenketten (string) als Schlüssel werden in Anführungszeichen angegeben.
 Sonderzeichen und Leerzeichen im Schlüssel funktionieren zwar, beim Einsatz von Sonder-

zeichen bei älteren PHP-Versionen oder abweichender Zeichensatzkonfiguration in der
php.ini sind Probleme jedoch nicht auszuschließen. Leer- und Sonderzeichen sollten Sie von
daher nicht als Array-Schlüssel verwenden.

 Der Schlüssel eines Arrays ist Case-sensitiv (Groß- und Kleinschreibung wird berücksichtigt).
Das heißt, "Schweiz" ist ein anderer Schlüssel als "schweiz". Beide Schlüssel können
gleichzeitig in einem Array vorkommen.

Auf assoziative Arrays zugreifen
Beim Zugriff auf einen Wert des Arrays wird der Schlüssel direkt angegeben. Zum Ansprechen des
Arrays kann auch eine Variable eingesetzt werden, die den Wert des Schlüssels gespeichert hat:

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 75

 Ergebnis

$auswahl = $hauptstaedte["Schweiz"]; Die Variable $auswahl hat den Wert "Bern".

oder

 Ergebnis
$k = "Schweiz";

$auswahl = $hauptstaedte[$k];
Die Variable $auswahl hat den Wert
"Bern".

Beispiel: array_assoz.php
Hier wird die Zuweisung der Städtenamen mit der array()-Anweisung realisiert.

 <?php

 $hauptstaedte = array("Schweiz" => "Bern",

 "Frankreich" => "Paris",

 "Deutschland" => "Berlin",

 "Spanien" => "Madrid");

 $k = "Spanien";

 echo "<p>Die Hauptstadt von $k ist " . $hauptstaedte["Spanien"] .
 ".</p>";

 echo "<p>Die Hauptstadt von $k ist " . $hauptstaedte[$k] . ".</p>";

?>

 Das assoziative Array wird über das

Schlüsselwort array()und die Zuweisung
der Schlüssel und Werte angelegt.

 Die Einrückungen und Zeilenumbrüche
dienen der Übersichtlichkeit des PHP-
Skripts, sie sind jedoch für PHP nicht
notwendig. Das ganze Array könnte auch
in einer Zeile definiert sein.

 Der Variablen $k wird die Zeichenkette Spanien zugewiesen.
 Das Array wird mit dem Schlüssel Spanien angesprochen und liefert den dazugehörigen

Wert Madrid. Die Bezeichnung des Schlüssels wird als Zeichenkette und in Anführungs-
zeichen in den eckigen Klammern angegeben.

 Alternativ können Sie mit der Variablen $k, welche den Wert Spanien hat, das ent-
sprechende Element aus dem Array auslesen und anzeigen. In diesem Fall verwenden Sie
keine Anführungszeichen.

 Werden Arrays mit eigenen Schlüsseln aufgebaut, sind in dem Array keine numerisch
indizierten Indizes vorhanden. $hauptstaedte[3] würde hier ein leeres Ergebnis liefern,
da der Schlüssel 3 nicht definiert ist.

Lizenziert für ComCave College GmbH

 6 Arrays

 76 © HERDT-Verlag

6.4 Arrays mit der Kurzschreibweise erstellen

Array-Kurzschreibweise
Alternativ zu der Syntax mit dem Schlüsselwort array() können Sie die Array-Kurzschreibweise
einsetzen, um Arrays zu erzeugen. Über die Kurzschreibweise können Sie sowohl indizierte als
auch assoziative Arrays erstellen. Die Kurzschreibweise ist schwerer zu lesen als die Array-
Deklarationen mit array(), bietet jedoch die Möglichkeit, PHP-Code kompakter zu schreiben.

Syntax der Kurzschreibweise

$feld = [Wert1, Wert2, Wert3, ...];

 Das Schlüsselwort array() entfällt in der Kurzschreibweise.
 Statt der runden Klammern F E werden die Werte in eckigen Klammern D C angegeben.
 Ansonsten gelten die gleichen Regeln wie bei indizierten und assoziativen Arrays.

Beispiel

$staedte = ["Frankfurt", "Berlin", "Bern"];

Beispiel: array_kurzschreibweise.php

Entsprechend dem Beispiel array_assoz.php wird in diesem Beispiel genau die gleiche Array-
Variable definiert:

 <?php

 $hauptstaedte = ["Schweiz" => "Bern",
 "Frankreich" => "Paris",
 "Deutschland" => "Berlin",
 "Spanien" => "Madrid"];

 echo "<p>Die Hauptstadt von Spanien ist " .
 $hauptstaedte["Spanien"] . ".</p>";
?>

 Das assoziative Array wird über die eckigen Klammern D C und die Zuweisung der Schlüs-

sel sowie der Array-Inhalte angelegt. Auch hier dienen Zeilenumbrüche und Einrückungen
lediglich der Übersicht des PHP-Codes.

 Hier wird das Element durch die direkte Angabe des Schlüssels angesprochen. Die Bezeich-
nung des Schlüssels wird als Zeichenkette in den eckigen Klammern und in Anführungs-
zeichen hinter dem Array-Variablenname angegeben.

 Die Array-Kurzschreibweise wurde mit PHP 5.4 eingeführt. Sollte Ihr Internet-Provider noch
eine ältere PHP-Version (PHP 5.3 und davor) im Einsatz haben, führt die Nutzung der
Kurzschreibweise zum parse error.

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 77

6.5 Mit eindimensionalen Arrays arbeiten

Arrays ändern
Um einen Wert innerhalb einer Array-Variablen zu ändern, geben Sie bei der Wertzuweisung bei
der Array-Variablen den entsprechenden Index bzw. Schlüssel des zu ändernden Wertes an und
weisen Sie den neuen Wert zu.

Indiziert: $staedte[1] = "Paris";
Assoziativ: $staedte["Frankreich"] = "Paris";

Sofern bereits ein Element mit dem angegebenen Index bzw. Schlüssel vorhanden ist, wird der
alte Wert durch den neuen ersetzt. Gibt es mit dem Schlüssel noch keinen Eintrag in dem Array,
fügen Sie mit diesen Anweisungen neue Einträge im Array hinzu.

Mit der Funktion unset() können Sie einen Eintrag aus einem Array löschen. In die runden
Klammern geben Sie die genaue Bezeichnung des Index der Array-Variablen ein:

Indiziert: unset($staedte[1]);
Assoziativ: unset($staedte["Frankreich"]);

Es wäre auch denkbar, die Schreibweise $staedte[1] = false oder $staedte[1] =
"" einzusetzen. Allerdings nehmen Sie mit dieser Syntax lediglich eine neue Wertzuweisung vor,
der Wert von $staedte[1] wäre dann false bzw. leer, der Schlüssel 1 bleibt jedoch im
Array erhalten. unset() hingegen löscht nicht nur den Wert, sondern die vollständige
Schlüssel-Wert-Kombination.

Arrays erweitern
Arrays können einfach erweitert werden, indem Sie einen neuen Wert zuweisen – entweder mit
oder ohne Schlüssel. In beiden Fällen wird ein neues Array-Element an das Ende des Arrays
angefügt.

Syntax und Bedeutung

Indiziert: $feld[] = Wert;
Assoziativ: $feld["key"] = Wert;

 Um einem Array einen weiteren Wert (oder mehrere Werte) hinzuzufügen, brauchen Sie bei

der Wertzuweisung in einem indizierten Array keinen Index anzugeben. Das Array wird am
Ende um den Wert (bzw. die Werte) ergänzt und der Index automatisch erhöht.

 In einem assoziativen Array müssen Sie einen Schlüssel angeben, ansonsten verwendet PHP
bei diesem Element des Arrays automatisch einen numerischen Indexwert.

 Sollte die Array-Variable noch nicht bestehen, erstellt PHP sie automatisch, sobald Sie der
Variablen einen Wert zuweisen.

Lizenziert für ComCave College GmbH

 6 Arrays

 78 © HERDT-Verlag

 Sollte der Schlüssel bereits vergeben sein, fügen Sie kein Element hinzu, sondern
überschreiben den bestehenden Eintrag.

 Numerisch indizierte und assoziative Arrays schließen sich gegenseitig nicht aus. Fügen Sie
einem assoziativen Array einen Wert ohne konkreten Schlüssel hinzu, fügt PHP automatisch
einen numerischen Index hinzu. Ebenso können Sie einem numerisch indizierten Array ein
Schlüssel-Werte-Paar hinzufügen. In beiden Fällen entsteht eine Mischform aus beiden
Array-Typen, die sowohl numerische Indexwerte als auch selbst definierte Schlüssel hat.
Der Einsatz von Arrays mit indizierten und assoziativen Schlüsseln gehört allerdings nicht zu
einem guten Programmierstil.

Beispiel: array_indiz.php (Auszug)

$staedte = array("Frankfurt", "Berlin", "Bern");
$staedte[] = "Graz";
$staedte[] = "Rom";

ergibt:

Index 0 1 2 3 4

Wert Frankfurt Berlin Bern Graz Rom

Indexwerte manuell vergeben
Bei assoziativen Arrays werden Schlüsselwerte stets vom Benutzer eingegeben und mit dem Wert
durch die Zeichenfolge ” zugewiesen. Bei indizierten Arrays können Sie ebenfalls Indexeinträge
selbst vergeben. Sie sind nicht an die automatisch vergebenen Indexwerte gebunden.

Beispiel: array_indiz_manuell.php
Hier wurde die Zuweisung der Städtenamen mit der array()-Anweisung realisiert.

 <?php

 $staedte = array(1 => "Frankfurt", "Berlin", "Bern");

 $staedte[34] = "Graz";

 $staedte[] = "Rom";

 $staedte[5] = "Hamburg";

 $staedte[] = "Köln";

 echo "<pre>";

 print_r($staedte);
 echo "</pre>";
?>

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 79

 Das Array $staedte wird über das Schlüsselwort array()angelegt und mit Werten gefüllt.
Sie weisen einen Indexwert zu, indem Sie den Indexwert zusammen mit den Zeichen ” vor
den gewünschten Eintrag schreiben. In diesem Fall wird dem Eintrag Frankfurt der Index 1
zugewiesen. Da es sich um den ersten Eintrag im Array handelt, wird der Indexwert 0 nicht
vergeben. Bei einer automatischen Indizierung wird die Nummerierung einfach nach dem
höchsten vorhandenen Wert fortgesetzt, also keine eventuell vorhandenen Lücken aufgefüllt.
Berlin erhält automatisch den Index 2, Bern den Index 3.

 Der Eintrag Graz erhält manuell den Indexwert 34.
 Der Indexwert für den Eintrag Rom wird

automatisch vergeben. PHP sucht den
größten Indexwert im Array (34) und setzt
die Index-Nummerierung mit dem nächst-
höheren Wert 35 fort.

 Hier wird ein Index vergeben, der kleiner ist
als der höchste Index im Array. Dieser Index
wird für den Eintrag im Array verwendet. In
der Ausgabe  können Sie allerdings beo-
bachten, dass der Eintrag hinter den exis-
tierenden Elementen in das Array eingefügt,
und nicht mit dem Index in das Array
einsortiert wird. Für die Sortierung der Array-
Elemente stehen unterschiedliche Array-
Funktionen zur Verfügung (weiter unten).

 Ein weiterer Eintrag ohne Index wird dem
Array hinzugefügt. In der Ausgabe sehen Sie,
dass der höchste Index 35 als Basis zur
weiteren Nummerierung verwendet wird,
und nicht der Index 5 des davor hinzugefüg-
ten Elements.

 Die Funktion print_r() gibt den Inhalt der Array-Variablen $staedte mit allen Einträgen
und dazugehörigen Indexwerten aus. Die Array-Variable wird in runden Klammern in der
Funktion print_r($staedte) geschrieben. So können Sie bei Arrays überprüfen, welche
Indexwerte den Einträgen zugeordnet sind. Das HTML-Tag <pre> sorgt dafür, dass das Array
zeilenweise ausgegeben wird.

6.6 Daten aus eindimensionalen Arrays extrahieren

Arrays mit der foreach()-Schleife durchlaufen
Mit einer foreach()-Schleife sind Sie in der Lage, die einzelnen Werte der Array-Elemente
auszulesen. Dabei wird jedes Element in einer neuen Variablen zwischengespeichert. Ein Vorteil
der foreach()-Schleife ist, dass Sie weder die Schlüssel des Arrays noch die Anzahl der Array-
Einträge kennen müssen. Die Schleife durchläuft das Array bis zum letzten Eintrag.

Ausgabe des Array-Inhaltes (Beispieldatei
„array_indiz_manuell.php“)

Lizenziert für ComCave College GmbH

 6 Arrays

 80 © HERDT-Verlag

foreach($feld as $wert) {
 Anweisungsblock;
}

foreach($feld as $index => $wert) {
 Anweisungsblock;

}

 foreach()erwartet die Angabe des assoziativen oder indizierten Arrays, dessen Elemente

durchlaufen werden sollen.
 In der ersten Variante  werden mithilfe von foreach bei jedem Schleifendurchlauf der

Variablen $wert nacheinander die Werte der Array-Elemente zugewiesen. Diese Variante
wird häufig für indizierte Arrays eingesetzt, da hier die automatisch vergebenen Indexwerte
oft ohne Bedeutung sind und nicht weiter verarbeitet oder ausgegeben werden sollen.

 Mithilfe der zweiten Variante  können Sie zusätzlich den Index jedes Array-Elements ausle-
sen. Bei jedem Durchlauf wird der Schlüssel des Array-Eintrags der Variablen $index zuge-
wiesen, der dazugehörige Array-Wert der Variablen $wert. Diese Variante wird häufig bei
assoziativen Arrays verwendet, wenn der Schlüssel für die weitere Verarbeitung benötigt oder
ausgewertet wird. Aber auch bei indizierten Arrays kann diese Variante eingesetzt werden.

Beispiel: foreach.php
Verschiedene Länder der Welt und deren Hauptstädte werden in einem assoziativen Array gespei-
chert. Zur Ausgabe sollen das Land (= Schlüssel) und die dazugehörige Hauptstadt (= Wert) in
einer Tabelle angezeigt werden:

 <?php

 $hauptstaedte = array("Schweiz" => "Bern",

 "Frankreich" => "Paris",
 "Deutschland" => "Berlin");

 $hauptstaedte["Polen"] = "Warschau";

 $hauptstaedte["Italien"] = "Rom";

 $hauptstaedte["Spanien"] = "Madrid";

 echo "<table border='1'>";

 echo "<tr><th>Land</th><th>Hauptstadt</th></tr>";

 foreach ($hauptstaedte as $land => $stadt) {

 echo "<tr><td>$land</td><td>$stadt</td></tr>";

 }

 echo "</table>";

?>

Beispieldatei „foreach.php“

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 81

 Das assoziative Array $hauptstaedte wird über das Schlüsselwort array()erstellt und
mit Werten gefüllt.

 Dem assoziativen Array $hauptstaedte werden weitere Elemente hinzugefügt.
 Der HTML-Tabellenkopf und die Kopfzeile der

Tabelle werden vor der foreach-Schleife erstellt,
der Tabellenfuß nach der Schleife .

 Mithilfe einer foreach-Schleife können Sie auf
jedes Element des Arrays zugreifen. Die Schleife
wird so lange ausgeführt, bis alle Elemente durch-
laufen wurden. In jedem Schleifendurchlauf wird
der Variablen $land der jeweilige Schlüssel und
der Variablen $stadt der Wert des Arrays an
der durch den Schlüssel festgelegten Position
zugeordnet.

 Die Werte werden in die Tabelle eingetragen und
über den Ausgabebefehl echo am Bildschirm aus-
gegeben.

6.7 Mehrdimensionale indizierte Arrays erstellen

Grundlagen zu mehrdimensionalen Arrays
Im folgenden Beispiel sehen Sie mehrere Angaben (Vorname, Nationalität und Alter), die jeweils
einen Eintrag in einer Array-Variablen bilden. Damit ist dieses Array ein mehrdimensionales
Array. Bei jeder der Angaben sind Mehrfachwerte möglich. Mehrdimensionale Arrays sind ver-
schachtelte Arrays, man spricht hier von äußeren und inneren Arrays.

Mehrdimensionale Arrays können sowohl numerisch indiziert als auch assoziativ sein. Eine Misch-
form aus numerisch indizierten und assoziativen Arrays ist ebenfalls möglich.

Index 1 Index 2 Wert

0

0 Oliver

1 spanisch

2 37 Jahre

1 0 Maria

1 deutsch

2 23 Jahre

2 0 Oliver

1 englisch

2 46 Jahre

In dieser Tabelle wird bereits die Arbeitsweise mehrdimensionaler Arrays ersichtlich. Um bei-
spielsweise an die Informationen von Maria zu gelangen, suchen Sie die Zeile mit der Angabe
Maria und lesen die einzelnen Werte dieser Zeile aus: Maria, deutsch, 23 Jahre.

 Ausgabe von Werten eines assoziativen
Arrays (Beispieldatei „foreach.php“)

Lizenziert für ComCave College GmbH

 6 Arrays

 82 © HERDT-Verlag

Mit mehrdimensionalen indizierten Arrays arbeiten
Ein mehrdimensionales indiziertes Array hat statt eines Indexes – in Abhängigkeit von der Anzahl
der Verschachtelungen – mehrere Indizes.

Auf eine bestimmte Angabe in einem mehrdimensionalen indizierten Array zugreifen
$person = array(
 array("Oliver",
 "Spanisch",
 "37 Jahre"
),
 array("Maria",
 "Deutsch",
 "23 Jahre"
),
 array("Oliver",
 "Englisch",
 "46 Jahre"
)
);

echo $person[1][0] . " ist " . $person[1][2] . " alt und spricht " .
 $person[1][1] . ".<hr>";

Ausschnitt aus der Beispieldatei „mehrdimensional.php“

Um auf einzelne Elemente in einem mehr-
dimensionalen Array zuzugreifen, verwenden
Sie die eckigen Klammern D C. Im ersten
Klammerpaar verwenden Sie den Index des
äußeren Arrays, im zweiten Klammerpaar den
Index des inneren Arrays.

Ein mehrdimensionales indiziertes Array erweitern

$person[3][0] = "Johanna";
$person[3][1] = "schwedisch";
$person[3][2] = "19 Jahre";

Oder alternativ:

$person[] = array("Johanna", "schwedisch", "19 Jahre");

Beides Ausschnitte aus der Beispieldatei „mehrdimensional.php“

Ausgabe des oben gezeigten Ausschnitts aus der
Beispieldatei „mehrdimensional.php“

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 83

6.8 Mit mehrdimensionalen assoziativen Arrays arbeiten

Syntax eines mehrdimensionalen assoziativen Arrays
Um ein mehrdimensionales Array anzulegen, wird jedem Schlüssel ein weiteres Array mit
Schlüssel-Wert-Paaren übergeben. Dabei wird jedem Schlüssel auf erster Ebene ein weiteres
Array zugewiesen. In diesen verschachtelten Arrays werden dann jeweils mehrere Schlüssel mit
Werten angegeben.

Beispiel: mehrdimensional.php
$land = array(
 "Spanien" => array("Hauptstadt" => "Madrid",
 "Sprache" => "Spanisch",
 "Waehrung" => "Euro",
 "Flaeche" => "504645 qkm"
),
 "England" => array("Hauptstadt" => "London",
 "Sprache" => "Englisch",
 "Waehrung" => "Pfund Sterling",
 "Flaeche" => "130395 qkm"
),
 "Portugal" => array("Hauptstadt" => "Lissabon",
 "Sprache" => "Portugiesisch",
 "Waehrung" => "Euro",
 "Flaeche" => "92345 qkm"
)

);

In diesem Array ist jeder Eintrag mit der entsprechenden Länderinformation über die aussage-
kräftigen Schlüssel Spanien, England oder Portugal direkt ansprechbar.

Auf ein bestimmtes Element in einem mehrdimensionalen assoziativen Array zugreifen
Bei numerisch indizierten Arrays greifen Sie mit dem numerischen Index auf die einzelnen Array-
Einträge zu. Wenn Sie ein bestimmtes Array-Element in einem assoziativen Array direkt anspre-
chen wollen, müssen Sie die Elemente über den Schlüssel ansprechen. Mit dem ersten Schlüssel
(hier Portugal) erhalten Sie das verschachtelte Array mit dem entsprechenden Index, mit dem
zweiten Schlüssel (hier Hauptstadt usw.) ermitteln Sie dann den zugehörigen Wert.

Die Schreibweise sieht folgendermaßen aus: Sie geben den Variablennamen des Arrays an, dahinter
zwei doppelte Pärchen von eckigen Klammern D C. Das erste Pärchen nimmt den ersten
Schlüssel auf, das zweite Pärchen dann den Schlüssel des inneren Array, also $wert["key-
1"]["key-2"]. Auch hier verwenden Sie Anführungszeichen für Zeichenketten-Schlüssel.

// Ausgabe der Angaben von Portugal
echo "<p>Angaben zu Portugal:
";
echo "Hauptstadt: " . $land["Portugal"]["Hauptstadt"] . ",
";
echo "Sprache: " . $land["Portugal"]["Sprache"] . ",
";
echo "Währung: " . $land["Portugal"]["Waehrung"] . ",
";
echo "Fläche: " . $land["Portugal"]["Flaeche"] . ".</p>";

Ausschnitt aus Beispieldatei „mehrdimensional.php“

Lizenziert für ComCave College GmbH

 6 Arrays

 84 © HERDT-Verlag

Ausgabe des oben gezeigten Ausschnitts aus der Beispieldatei „mehrdimensional.php“

Ein mehrdimensionales assoziatives Array erweitern
$land["Ungarn"]["Hauptstadt"] = "Budapest";
$land["Ungarn"]["Sprache"] = "Ungarisch";
$land["Ungarn"]["Waehrung"] = "Forint";
$land["Ungarn"]["Flaeche"] = "93036 qkm";

oder alternativ:

$land["Ungarn"] = array("Hauptstadt" => "Budapest",
 "Sprache" => "Ungarisch",
 "Waehrung" => "Forint",
 "Flaeche" => "93036 qkm");

Ausschnitt aus Beispieldatei „mehrdimensional.php“

6.9 Daten aus mehrdimensionalen Arrays extrahieren

Bei der Arbeit mit mehrdimensionalen Arrays kommt es häufig vor, dass Sie die kompletten
Daten eines inneren Arrays benötigen. Mit einer foreach-Schleife können Sie alle Werte einer
Array-Variablen auslesen. Bei der Verwendung einer foreach-Schleife müssen Sie keinen Index
oder Schlüssel kennen. Bei jedem Schleifendurchlauf wird das aktuelle Element in einer von
Ihnen angegebenen Variablen zwischengespeichert. Hierbei handelt es sich auch um eine Array-
Variable mit dem aktuellen „Datensatz“.

Syntax
foreach($feld as $wert);

Bei jedem einzelnen Schleifendurchlauf wird das verschachtelte Array in der Variablen $wert
gespeichert. Um nun die einzelnen Werte dieses Arrays auszulesen, wird ein noch nicht vor-
gestellte PHP-Funktion verwendet: die list()-Funktion.

Syntax
list($variable1, $variable2, ...) = $wert;

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 85

 list() dient dazu, die einzelnen Werte des inneren Arrays aufzunehmen und sie den
Variablen zuzuweisen, die als Parameter in list() angegeben sind.

 In den runden Klammern der Funktion list() werden die Variablennamen angegeben, in
denen die einzelnen Array-Werte gespeichert werden sollen. Diese können frei gewählt
werden.

 Über dem Zuweisungsoperator 9 wird der Funktion list() die Array-Variable
zugewiesen, im Beispiel $wert. Dies wiederholt sich beim foreach() bei jedem
einzelnen Schleifendurchlauf.

 Nun werden die Werte der in list() angegebenen Variablen mit den einzelnen Einträgen
des Arrays versehen. Die erste Variable erhält den Wert des ersten Eintrags aus dem Array
$wert, die zweite Variable den des zweiten Eintrags aus dem Array usw.

 list() benötigt numerisch indizierte Arrays, die mit dem Schlüssel 0 beginnen und die
nicht mit abweichenden Schlüsseln versehen worden sind.

 Die Funktionalität von list() hat sich mit der PHP Version 7.0 verändert. In Kombination mit
der Array-Kurzschreibweise [] werden Werte nicht mehr umgekehrt, sondern in angege-
bener Reihenfolge zugewiesen. Die Parameter innerhalb der list()-Funktion dürfen nicht
mehr leer gelassen werden und list() kann nicht mehr auf Zeichenketten angewendet
werden. Ältere PHP-Skripte können, falls Sie auf einem Webserver mit PHP 7.0 ausgeführt
werden, zu Fehlern führen oder falsche Resultate liefern.

Beispiel: array_mehrdimensional_list.php
Verschiedene Angaben zu Ländern werden in einem mehrdimensionalen Array gespeichert.
Zur Ausgabe sollen der Name des Landes, die Hauptstadt, die Sprache und die Landeswährung in
separaten Variablen abgelegt werden.

 <table border="1">

 <tr>

 <th width="125">Land</th>

 <th width="125">Hauptstadt</th>

 <th width="125">Sprache</th>

 <th width="125">Währung</th>

 </tr>
 <?php

 // Array $staedte wird definiert und gefüllt

 $staedte = array(

 "Japan" => array("Tokio", "Japanisch", "Yen"),

 "Niederlande" => array("Amsterdam", "Niederländisch", "Euro"),

 "Polen" => array("Warschau", "Polnisch", "Złoty"),

 "Indien" => array("Neu Delhi", "Indisch", "Rupie"),

 "Island" => array("Reykjavik", "Isländisch", "Krone"),

 "Italien" => array("Rom", "Italienisch", "Euro"),

 "Frankreich" => array("Paris", "Französisch", "Euro"),

 "Spanien" => array("Madrid", "Spanisch", "Euro"),

 "England" => array("London", "Englisch", "Pfund Sterling")

);

 // Auslesen des gesamten Arrays mit foreach

Lizenziert für ComCave College GmbH

 6 Arrays

 86 © HERDT-Verlag

 foreach ($staedte as $key => $ausgabe) {

 list($hauptstadt, $sprache, $waehrung) = $ausgabe;

 echo "<tr>";

 echo "<td>" . $key . "</td>";

 echo "<td>" . $hauptstadt . "</td>";

 echo "<td>" . $sprache . "</td>";

 echo "<td>" . $waehrung . "</td>";

 echo "</tr>";

 }

 ?>

</table>

 Das assoziative Array $staedte wird neu definiert und mit Werten gefüllt. Die Daten ent-

halten Informationen zur Hauptstadt eines Landes, zur Sprache und zur im Land verwende-
ten Währung. Der Name des Landes selbst wird als eindeutiger Schlüssel verwendet. Die
verschachtelten Arrays selbst sind numerisch indizierte Arrays. Nur so kann die Funktion
list() einwandfrei arbeiten.

 Mithilfe einer foreach-Schleife durchlaufen Sie das Array, bis das letzte Array-Element
erreicht ist. Die foreach()-Schleife speichert dabei in jedem Durchlauf das verschachtelte
Array in der Variablen $ausgabe. Im ersten Schleifendurchlauf enthält die Variable
$ausgabe nur das Werte-Array des zuerst definierten Landes Japan (Tokio,
Japanisch, Yen), im zweiten Schleifendurchlauf die Werte der Niederlande etc.

 Über den Befehl list() werden die Daten zum aktuell abgerufenen Land (Hauptstadt,
Sprache und Währung) in die entsprechenden Variablen $hauptstadt, $sprache und
$waehrung überführt.

 Über den Ausgabebefehl echo werden die Werte der Variablen am Bildschirm ausgegeben.
Bei der Variablen $key handelt es sich um den Schlüssel (Landesnamen), der in  durch die
foreach()-Schleife zugewiesen wurde.

Hinweis: Die HTML-Attribute border="1" und width="125" in diesem Beispiel lassen die
Testausgabe etwas geordneter erscheinen. Im modernen Webdesign würde man das Layout auf
jeden Fall über CSS steuern.

Ausgabe von Werten eines mehrdimensionalen assoziativen Arrays
(Beispieldatei „array_mehrdimensional_list“)

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 87

6.10 Den passenden Array-Typ verwenden

Der passende Array-Typ hängt von den Daten ab, die Sie in der Array-Variablen speichern wollen.
Die folgende Tabelle soll Ihnen bei der Auswahl des Array-Variablentyps helfen:

Daten Anzahl an
Informationen
pro Eintrag

Bevorzugter Array-Typ

Einfache Liste (z. B. Namen, Länder,
Automarken etc.)

1  eindimensional/indiziert

Wertepaare (z. B. Länder –
Hauptstädte, Artikel – Preis etc.)

2  eindimensional/assoziativ,
sofern ein Wert eindeutig
ist (= Schlüssel), sonst

 mehrdimensional/indiziert
oder assoziativ

Mehrere evtl. mehrfach verschachtel-
te Werte (z. B. Mitarbeiter und ihre
Stammdaten, Artikelkategorien –
Artikel – Artikeldetails etc.)

> 2  mehrdimensional/indiziert
oder assoziativ

6.11 Weitere Informationen zu Arrays in PHP

Arrays begegnen Ihnen in PHP nicht nur, wenn Sie selbst Array-Variablen definieren. PHP arbeitet
intern ebenfalls mit Arrays, und zwar bei folgenden Aktionen, die in den nächsten Kapiteln des
Buches besprochen werden:

 Die in einem HTML-Formular übermittelten Daten speichert PHP in einer Array-Variablen.
 Wenn Sie mit Sessions arbeiten, werden die zur Session gehörigen Daten automatisch in

einem Array abgelegt.
 Bei Abfragen aus Datenbanken befinden sich die Ergebnisse ebenfalls in einer Array-

Variablen.

Weitere Array-Funktionen
PHP kennt annähernd 100 Funktionen für den Umgang mit Arrays. Für nahezu jede Fragestellung
liefert PHP eine passende Funktion. Folgende Aufgabengebiete werden abgedeckt:

 Auslesen
 Auswerten (u. a. Dopplungen finden)
 Sortieren (vorwärts, rückwärts, vorwärts nach Schlüssel, rückwärts nach Schlüssel)
 Suchen
 Teilen und Zusammensetzen
 Verändern (u. a. Füllen, Hinzufügen, Löschen)

Lizenziert für ComCave College GmbH

 6 Arrays

 88 © HERDT-Verlag

 mehrere Arrays zusammenführen
 neues Array aus den Array-Schlüsseln generieren

Eine Auswahl wichtiger Array-Funktionen wird in der nachfolgenden Tabelle vorgestellt:

Array-Funktion Beschreibung

array_flip($feld) Im Array werden Indizes mit Werten vertauscht.

array_key_exists(wert,
$feld)

Prüfung, ob ein Schlüssel in einem Array vor-
handen ist.

array_keys($feld) Liefert die Indizes des angegebenen Arrays zurück.

array_merge($feld1, $feld2…) Fügt die Elemente mehrerer Arrays zu einem Array
zusammen.

array_push($feld, werte) Das Array wird um den oder die angegebenen
Werte am Ende des Arrays erweitert.

array_search(wert, $feld) Das Array wird nach dem angegebenen Wert
durchsucht.

array_sum($feld) Addiert die Werte des Arrays und liefert das
Ergebnis zurück.

array_unique($feld) Es wird ein neues Array erstellt, aus dem doppelte
Werte des angegebenen Arrays gelöscht wurden.

array_values($feld) Alle Werte des Arrays werden zurückgeliefert.

count($feld) Gibt die Anzahl der Elemente des Arrays zurück.

sort($feld)

rsort($feld)
Sortiert die Werte des angegebenen Arrays auf-
steigend bzw. absteigend.

ksort($feld)

krsort($feld)
Sortiert das angegebene Array nach Schlüssel
aufsteigend bzw. absteigend.

Beispiele zu Array-Funktionen finden Sie im Abschnitt 10.8.

Einen Überblick über alle Array-Funktionen finden Sie auf der Webseite von php.net:

http://docs.php.net/manual/de/ref.array.php

Lizenziert für ComCave College GmbH

 Arrays 6

 © HERDT-Verlag 89

6.12 Übungen

Übung 1: Mit eindimensionalen Arrays arbeiten
Level

Zeit ca. 10 min

Übungsinhalte  Arrays
 Array-Elemente hinzufügen
 Array-Elemente löschen
 Nutzen der foreach()-Schleife
 HTML-Ausgabe

Übungsdatei --

Ergebnisdatei kennzeichen.php

1. Erstellen Sie eine neue PHP-Datei unter dem Namen

kennzeichen.php. Definieren Sie eine assoziative
Array-Variable, die Sie mit der folgenden Liste von
Autokennzeichen und den dazugehörigen Städten
füllen:
 HH Hamburg
 B Berlin
 S Stuttgart

2. Ergänzen Sie die Liste nach der Erstellung mit den
Elementen:
 F Frankfurt
 HB Bremen

3. Löschen Sie mithilfe des Befehls unset() das Element Bremen aus dem Array und definie-
ren Sie den Eintrag Frankfurt neu – er soll nun Frankfurt am Main heißen.

4. Listen Sie mithilfe von foreach alle Elemente der Tabelle auf und vergeben Sie zusätzlich
Überschriften für die Tabelle.

Beispiel-Ergebnisdatei „kennzeichen.php“

Lizenziert für ComCave College GmbH

 6 Arrays

 90 © HERDT-Verlag

Übung 2: Mit mehrdimensionalen Arrays arbeiten
Level

Zeit ca. 10 min

Übungsinhalte  Mehrdimensionale Arrays
 Array-Elemente hinzufügen
 Array-Elemente löschen
 Nutzen der foreach()-Schleife
 HTML-Ausgabe

Übungsdatei --

Ergebnisdatei uebung_mehrdimensional.php

1. Erstellen Sie eine neue Datei unter dem Namen uebung_mehrdimensional.php. Erstellen Sie

ein mehrdimensionales indiziertes Array mit folgenden Inhalten und geben Sie die Daten
anschließend in Tabellenform (mit Überschrift) auf dem Bildschirm aus:

Beginn Disziplin Ort Bemerkung

09:30 Uhr Diskuswurf Nebenplatz Jugendmeisterschaften

10:00 Uhr 5-km-Lauf Stadion - Laufbahn Offener Lauf

11:00 Uhr Halbmarathon Waldgebiet Teilnahme ab 18 Jahren

12:00 Uhr Stabhochsprung Stadion - Stabhochsprunganlage Nur Frauen

Beispiel-Ergebnisdatei „uebung_mehrdimensional.php“

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 91

7
7. Mit Formularen arbeiten

Beispieldateien: Dateien aus Ordner Kap07

7.1 Interaktion mit PHP

Formulare einsetzen

Formulare sind die Schnittstelle zwischen Benutzer und PHP. Immer, wenn ein Benutzer inter‐
agieren möchte, wird er Daten in ein Formular eintragen. Über Formulare können Daten an den
Webserver gesendet werden. PHP kann die Eingaben auswerten und entsprechend die nächste
Webseite dynamisch und individuell aufbauen. Unabhängig davon, ob Sie ein Login‐, Bestell‐ oder
Kontaktformular verwenden, es handelt sich immer um die Übertragung von Nutzereingaben und
deren anschließende Verarbeitung durch PHP.

Formularauswertung mit PHP

Mit PHP können Sie interaktive Webseiten erstellen, bei denen Benutzereingaben aus Formula‐
ren durch PHP ausgewertet werden:

Nachdem Sie ein Formular aufgerufen haben, können Sie Daten in das Formular eingeben. Wenn
das Formular abgesendet wird, werden die eingegebenen Daten an den Webserver übertragen
und stehen PHP für die Verarbeitung zur Verfügung. Abhängig von den Eingaben kann PHP indi‐
viduelle HTML‐Ergebnisseiten generieren und sendet diese an Ihren Browser zurück.

Methoden der Datenübertragung

Das Hypertext Transfer Protocol (HTTP, englisch für Hypertext‐Übertragungsprotokoll) ist ein
Kommunikationsprotokoll, welches für die Übertragung von Daten zwischen Browser und Web‐
server verantwortlich ist bzw. die Regeln für den Austausch von Daten festlegt.

HTTP sieht zwei Methoden vor, um Daten an einen Webserver zu senden: POST und GET. Diese
beiden Methoden unterscheiden sich u. a. dadurch, wie Formulardaten an den Server übertragen
werden oder in der Menge der Daten, die übertragen werden können.

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 92 © HERDT‐Verlag

Auf welche Weise Eingaben eines HTML‐Formulars an den Webserver gesendet werden, definieren

Sie selbst. Das HTML‐Element form sieht das Attribut method vor. Bei der Angabe von <form
method="POST"> legen Sie fest, dass Formulardaten per POST‐Methode übertragen werden,

entsprechend <form method="GET"> für die GET‐Methode. Die Werte POST bzw. GET sind
nicht Case‐sensitiv, <form method="post"> und <form method="get"> sind ebenfalls
gültige Schreibweisen. Lassen Sie das method‐Attribut leer oder weg (absichtlich oder versehent‐
lich), verwenden Browser den Standardwert GET für method, Daten werden dann per GET‐
Methode übertragen.

Die GET‐Methode

Die Eingaben werden nach dem Absenden des Formulars an die URL angehängt. Der URL folgt
zuerst das Fragezeichen A als Trennung von der eigentlichen URL und den Eingaben des
Formulars. Hinter dem A folgen dann alle Daten aus dem Formular. Diese bestehen aus dem

Schlüssel (dem Wert des Formularelement‐Attributs name) und der eigentlichen Eingabe des
Nutzers, getrennt durch ein Gleichheitszeichen 9 (z. B. vorname=Max). Die einzelnen
Schlüssel‐Wert‐Paare werden jeweils durch ein „kaufmännisches Und“ B voneinander getrennt.

Eine URL nach Absenden eines GET‐Formulars könnte wie folgt aussehen:

http://localhost/antwort.php?vorname=Max&nachname=Mustermann&kennwort=123abc

Eine solche URL könnte auch als Link auf einer Webseite verwendet werden. Links verwenden
also die HTTP‐GET‐Methode zur Datenübertragung. Der Webserver selbst kann nicht unter‐
scheiden, ob die Werte aus einem Formular mit der GET‐Methode oder von einem Link mit
Parametern stammen.

Merkmale von GET

 Angabe von method="GET" im einleitenden HTML‐Tag <form>

 Formulardaten werden sichtbar und unverschlüsselt in der URL übermittelt

 Daten sind in der Adresszeile des Browsers veränderbar, ohne dass das Formular erneut
ausgefüllt bzw. abgesendet werden muss.

 Der Aufruf des Skripts mit Angabe der Daten kann als Lesezeichen gespeichert werden.

 Die Übertragungsmenge gegenüber POST ist wesentlich geringer. Die Begrenzung der Daten‐
menge wird durch den Browser bestimmt und kann von Browser zu Browser variieren.

Die POST‐Methode

Bei der POST‐Methode werden Formulardaten als Datenblock bzw. Datenstrom nach dem HTTP‐
Header gesendet. In der Adressleiste des Browsers werden keine Werte angezeigt, die
Formulardaten werden für den Nutzer nicht sichtbar übertragen. Die Menge der Daten, die über‐
tragen werden können, ist bei der POST‐Methode wesentlich größer als bei der GET‐Methode.
Außerdem ermöglicht ausschließlich die POST‐Methode den Upload von Dateien (<input
type="file">), die Übertragung von Dateien ist mit der GET‐Methode nicht möglich.

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 93

Merkmale von POST

 Angabe von method="POST" im einleitenden HTML‐Tag <form>

 Daten können nicht in der Adresszeile des Browsers manipuliert werden.

 Formulardaten werden nicht in der Protokolldatei des Servers gespeichert.

 Formulardaten sind nicht im Verlauf des Browsers sichtbar.

 Die Datenmenge, die übertragen werden kann, ist wesentlich größer als bei der GET‐
Methode. Per Standard können 8 MB übertragen werden, der Wert kann angepasst werden

(über die php.ini über den Parameter post_max_size, vgl. Installationshinweise im
Anhang).

 Upload von Dateien ist nur über die POST‐Methode möglich (hierzu wird im form‐Tag das
Attribut ENCTYPE="multipart/form-data" benötigt).

Unterschiede zwischen GET und POST

Der wesentliche Unterschied liegt in der Übertragung in der URL im Gegensatz zu der als Daten‐
strom. Bei der Übertragung in der URL können Daten in der URL verändert werden, diese bietet
die Möglichkeit der Manipulation. Die Möglichkeit, GET‐URLs als Favorit zu speichern oder diese
per E‐Mail zu versenden, birgt die Gefahr, dass diskrete Eingaben wie z. B. Passwörter für andere
Nutzer sichtbar werden.

<input type="hidden">‐Felder (versteckte Formular‐Felder im HTML für interne Daten
zur Weiterverarbeitung) werden bei der GET‐Methode in der URL für den Nutzer direkt sichtbar.

Allerdings sind hidden‐Felder auch bei der POST‐Methode im HTML‐Quelltext auszulesen, was
die Möglichkeit der Manipulation bietet.

Ein weiterer Unterschied ist das Verhalten der Browser: Wird eine Webseite nach dem Absenden
eines GET‐Formulars neu geladen (z. B. per %‐Taste), werden die Formulardaten erneut an den
Webserver gesendet, hier kann es zur mehrfachen Verarbeitung der gleichen Daten kommen (was
z. B. bei einer Bank‐Überweisung fatal wäre). Bei der POST‐Methode erscheint im Browser ein Dia‐
logfenster mit der Frage Möchten Sie die Formulardaten erneut senden? Erst wenn Sie diese Frage
bestätigen, wird das Formular nochmal versendet. So erkennen Sie bereits beim Reload einer Seite,

welche HTTP‐Methode im form‐Tag definiert wurde.

Aufgrund der Sichtbarkeit der übertragenen Daten kann die POST‐Methode als sicherer als die
GET‐Methode bewertet werden. Aus diesem Grund wird in diesem Buch vorwiegend die POST‐
Methode in Formularen verwendet.

Allerdings: Die Wahl der POST‐Methode bietet nur eine kleinere Verbesserung der Sicherheit.
Auch POST‐Formulare können manipuliert werden. Ein Seitenreload kann dazu führen, dass
gleiche Eingaben mehrfach an den Webserver gesendet werden. Diese Risiken müssen über
eine durchdachte Logik im PHP abgefangen werden.

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 94 © HERDT‐Verlag

7.2 Formulare mit PHP auswerten

Formulardaten eingeben

Beispiel: formular.html

Erstellen Sie zunächst eine HTML‐Datei, in der ein einfaches Formular mit Text‐Eingabefeldern
integriert ist. In diesem Formular soll der Nutzer seinen Vor‐ und Nachnamen sowie seinen

Wohnort angeben. Im Formular sollen Eingaben in Textfelder (input‐Elemente vom

type="text") erfolgen.

 <!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>einfaches Formular</title>
 </head>
 <body>
 <h1>Anmeldung</h1>

 <p>Bitte füllen Sie die nachfolgenden Eingabefelder aus: </p>

 <form action="formular_auswertung.php" method="POST">
 <p>Vorname: <input type="text" name="vorname"></p>
 <p>Nachname: <input type="text" name="nachname"></p>

 <p>Wohnort: <input type="text" name="ort"></p>
 <p><input type="submit" value="Abschicken">
 <input type="reset" value="Zurücksetzen"></p>
 </form>
 </body>
</html>

 Im HTML wird das Formular über das <form>‐

Tag definiert. Das Skript, das die Formularda‐
ten auswerten und verarbeiten soll, wird über

das Attribut action festgelegt. In diesem Fall
werden die Daten an das PHP‐Skript
formular_auswertung.php gesendet.
Die POST‐Methode zur Übermittlung der

Daten wird mittels method="POST" fest‐
gelegt. Wichtig ist, dass alle Formularfelder
innerhalb des öffnenden und schließenden

form‐Tags liegen. Auch die Schaltfläche
Abschicken muss innerhalb der form‐Tags
stehen.

 Es folgen die einzeiligen Texteingabefelder vom input‐Type text. Falls Sie das type‐
Attribut weg oder leer lassen, stellen alle Browser automatisch ein einzeiliges Eingabefeld dar.

Die Felder werden dabei über das HTML‐Attribut name als vorname, nachname und ort
gekennzeichnet. Nach dem Absenden des Formulars sind die name‐Attribute die Schlüssel des
$_POST‐ bzw. $_GET‐Arrays, welche für die weitere Verarbeitung zur Verfügung stehen.

 Es folgen die Standardschaltflächen zum Abschicken und Zurücksetzen der Formulardaten.
Die Schaltfläche Zurücksetzen ist optional und dient lediglich der leichteren Bedienung des
Formulars durch den Benutzer, falls dieser seine Eingaben mit einem Klick löschen möchte.

Beispielformular „formular.html“

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 95

Alle Formularelemente, also einzeilige Eingabefelder (auch vom Type email, number,
password usw.), Selectboxen, mehrzeilige Textfelder sowie Radiobuttons und Checkboxen eines

HTML‐Formulars müssen durch das Attribut name eindeutig gekennzeichnet sein. Der Wert von

name des Formularfeldes wird später als Schlüssel im Array $_POST bzw. $_GET verwendet.

Formulardaten übertragen

Mit Klick auf die Schaltfläche Abschicken werden die eingegebenen Formulardaten an den Web‐

server gesendet. Im Formular‐Attribut action geben Sie das PHP‐Skript an, an welches die
Daten zur Verarbeitung gesendet werden sollen (formular_auswertung.php). Dieses Skript soll
nun erstellt werden.

Formulardaten auswerten

Nach dem Absenden des Formulars stellt der Webserver die Übertragung von Formulardaten fest
und stellt diese für das PHP‐Skript je nach Übertragungsmethode in dem superglobalen Array
$_POST bzw. $_GET zur Verfügung. Superglobal bedeutet, das Array ist allgemein in PHP ver‐
fügbar (mehr dazu im folgenden Kapitel). Dabei ist der Schlüssel des Arrays der Wert des HTML‐

Attributs name, der Wert selbst ist dann die Eingabe des Nutzers.

Darüber hinaus hält PHP die übertragenen Werte in dem von PHP definierten Array $GLOBALS
bereit. Je nach Übertragungsmethode können Sie entweder auf die Arrays $GLOBALS["_GET"]
bzw. $GLOBALS["_POST"] zugreifen. Zusätzlich können Sie die Array‐Variable $_REQUEST
verwenden. In diesem Array stehen die Formulardaten unabhängig von der Übertragungs‐

methode zur Verfügung. Allerdings sollten Sie immer das $_POST‐ bzw. $_GET‐Array
ansprechen. Das ist guter Stil und ein Aspekt sicherer Programmierung. Damit stellen Sie sicher,
dass Formulardaten auch aus dem Formular stammen, das Sie selbst programmiert haben.

Die übermittelten Daten sprechen Sie über die Array‐Variable und den Schlüssel an:

$_POST["Schlüssel"]. Der Wert des HTML‐input‐Attributs name (z. B.
name="vorname") wird als Schlüssel der Array‐Variablen $_POST verwendet, z. B.
$_POST["vorname"]. Die Eingabe im Formular bildet den dazugehörigen Wert der Array‐

Variablen, z. B. $_POST["vorname"] = "Max".

Beispiel: formular_auswertung.php

Sie erstellen ein PHP‐Skript, das die Eingaben des HTML‐Formulars ausliest und zur Kontrolle am
Bildschirm ausgibt.

<?php
 echo "<p>Folgende Daten wurden übermittelt:</p>";
 echo " <p>Vorname: " . $_POST["vorname"] . "
";
 echo "Nachname: " . $_POST["nachname"] . "
";
 echo "Wohnort: " . $_POST["ort"] ."</p>";
?>

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 96 © HERDT‐Verlag

Ausgabe der Beispieldatei „formular_auswertung.php“

Übertragene Formulardaten ausgeben

PHP bietet unterschiedliche Funktionen, mit der Sie sich übermittelte Formulardaten im Browser
anzeigen lassen können:

print_r(Variable);
var_dump(Variable 1[, Variable 2,...]);

Erweitern Sie das PHP‐Skript um folgende Zeilen. Sowohl print_r() als auch var_dump()
dienen der Darstellung von Array‐Variablen im Browser. Das pre‐Tag, welches Sie über den
echo‐Befehl ausgeben, dient der zeilenweisen Darstellung der Arrays. Ohne das pre‐Tag
werden die Array‐Daten in einer Zeile nacheinander und schwerer zu lesen dargestellt.

echo "<pre>";
print_r($_POST);
var_dump($_POST);
echo "</pre>";

Erweiterung der Beispieldatei „formular_auswertung.php“ um die angegebenen Zeilen

Die Ausgabe von print_r() sehen Sie in
nebenstehender Abbildung: Die Schlüssel des
$_POST‐Arrays werden in eckigen Klammern

angezeigt (sie entsprechen den name‐Attributen
der Formularelemente), daneben die Eingaben,
die der Nutzer gemacht hat.

var_dump() liefert im Gegensatz zu

print_r() umfangreichere Informationen.
Neben Schlüssel und Wert wird angezeigt, wie

viele Einträge das $_POST‐Array hat, wie viele
Zeichen jede einzelne Eingabe hat und von
welchem Datentyp der Wert eines Array‐
Eintrags ist (allerdings handelt es sich im Falle
von Formulardaten auch um den Datentyp
string, auch wenn Ganz‐ oder Fließkommazahlen
eingegeben wurden).

 Anzeige der Daten, die aus dem Formular
übertragen werden

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 97

Verschiedene Formularelemente

Die wichtigsten Formularelemente in HTML sind die Elemente input, select und option,
textarea und button. Das input‐Element ist dabei hervorzuheben, da erst durch den Wert

des type‐Attributs das Eingabefeld zu einem speziellen Feld wird, z. B. type="radio" wird zum

Radiobutton, type="checkbox" zur Checkbox, type="file" zum Upload‐Button,

type="email" wird zum E‐Mail‐Feld (Browser validieren die eingegebene E‐Mail‐Adresse, auf

mobilen Geräten wird die Tastatur mit dem L‐Zeichen angezeigt), type="submit" wird zum
Absende‐Button.

Mit HTML5 sind weitere type‐Attributwerte hinzugekommen, die Formulare speziell auf die zu
erwartenden Eingaben anpassbar machen, um die Bedienbarkeit zu verbessern (beispielsweise

erzeugt type="date" ein Eingabefeld, welches einen Auswahlkalender anzeigt.

Allerdings unterstützen ältere Browser, zum Beispiel der Internet Explorer vor der Version 10, neue
HTML5‐Formular‐Elemente nicht. Aber auch aktuelle Browser unterstützen nicht alle neuen

input‐Attribute, die der HTML5‐Standard vorsieht. Was unterstützt wird, finden Sie unter
http://caniuse.com.

Beispiel: form‐elemente.html

In dieser HTML‐Datei finden Sie eine Reihe von unterschiedlichen Formular‐Elementen. Obwohl
die Menge aller Formular‐Elemente überschaubar ist, verändert sich die Darstellung besonders

beim type‐Attribut für das input‐Feld. Aber nicht nur die Ansicht im Browser ist verschieden,

auch bei der Vergabe des name‐Attributs und bei Übergabe der Eingaben an die Zielseite sind
ein paar Dinge zu beachten.

<form action="form-elemente.php" method="get">

 <p>E-Mail: <input type="email" name="email"></p>
 <p>Passwort: <input type="password" name="password"></p>
 <p>Datum: <input type="date" name="datum"></p>
 <p>Farben:

 <input type="checkbox" name="gelb"> gelb
 <input type="checkbox" name="blau"> blau
 <input type="checkbox" name="gruen"> gruen
 <input type="checkbox" name="rot" value="#f00"> rot </p>
 <p>Ampel:

 <input type="radio" name="ampel" value="gruen"> grün
 <input type="radio" name="ampel" value="gelb"> gelb
 <input type="radio" name="ampel" value="rot"> rot </p>
 <p>Speisen:

 <input type="checkbox" name="speisen[]"> Pizza
 <input type="checkbox" name="speisen[]"> Nudeln
 <input type="checkbox" name="speisen[]" value="salat"> Salat </p>

 <p> Eis: <select name="eissorte">
 <option></option>
 <option>Schoko</option>
 <option>Vanille</option>
 <option>Nuss</option>
 </select> </p>

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 98 © HERDT‐Verlag

 <p> Gemüse: <select name="gemuese">
 <option></option>
 <option value="sorte-1">Bohnen</option>
 <option value="sorte-2">Erbsen</option>
 <option value="sorte-3">Blumenkohl</option>
 </select> </p>

 <p> Obst: <select name="obst[]" multiple>
 <option>Apfel</option>
 <option>Birne</option>
 <option>Pflaume</option>
 <option>Orange</option>
 </select> </p>

 <p>Nachricht:
<textarea name="memo"></textarea></p>
 <p><input type="submit" value="Abschicken" name="senden"></p>

</form>

 Die Übertragungsmethode wurde hier bewusst mit der

GET‐Methode definiert. Schauen Sie sich nach Absenden
des Formulars die URL an, z. B. finden Sie dort die
Eingabe des Passwortes im Klartext. Achten Sie darauf,
dass alle Formularfelder einschließlich des Absende‐
Buttons innerhalb des öffnenden und schließenden

form‐Tags liegen.

 Hier werden drei input‐Elemente mit

unterschiedlichen type‐Attributen hinterlegt. Optisch
sehen alle drei aus wie ein einzeiliges Eingabefeld.
Allerdings unterscheiden Sie sich in der Bedienung durch

den Nutzer. Ein input‐Element vom type="email"
überprüft je nach Browser die Eingabe auf eine gültige

Syntax, mit dem type="date" wird je nach Browser
ein Kalenderauswahlfeld angezeigt. Bei allen drei
Feldern ist das name‐Attribut vergeben, welches als
Schlüssel im $_GET‐Array wieder zu finden ist. Die
Schlüssel werden bei allen drei Feldern immer über‐
geben, auch wenn der Nutzer keine Eingabe
vorgenommen hat.

 Über das type‐Attribut checkbox erzeugen Sie hier
vier Checkboxen. Als name‐Attribut vergeben Sie auch
hier einen Wert, den Sie als Schlüssel im $_GET‐Array
wieder finden. Beachten Sie: Bei der vierten Checkbox ist

zusätzlich der value="#f00" angegeben. In dem Fall,
und falls die Checkbox ausgewählt wird, wird mit dem

Schlüssel rot auch der Wert #f00 übergeben. Bei den
anderen drei Boxen fehlt ein value‐Attribut. In diesen
Fällen ist der Wert zum Schlüssel im $_GET‐Array
lediglich on, falls die Checkbox ausgewählt wurde. Mit

value zu arbeiten ist z. B. sinnvoll, wenn Sie ein
Produkt zur Auswahl anbieten, als value dann aber die
Produkt‐ID verwenden wollen, und nicht mit der
Produktbezeichnung, die zur Ansicht im Browser dient.



Ausgabe der Beispieldatei
 „form‐elemente.html



Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 99

Beachten Sie: Ist eine Checkbox nicht ausgewählt, werden weder Schlüssel noch ein möglicher
Wert übertragen.



 Über den Wert radio für das type‐Attribut definieren Sie hier Radiobuttons. Damit diese
miteinander korrespondieren, also nur ein Radiobutton von den dreien auswählbar ist,

müssen alle dasselbe name‐Attribut haben. Um die Auswahl im PHP‐Code erkennen zu

können, muss bei einem Radiobutton auch immer ein value vergeben werden.

Auch für Radiobutton gilt: Wenn der Nutzer keine Auswahl trifft, werden weder Schlüssel noch
Wert übertragen.

 Hier werden weitere Checkboxen hinterlegt. Im

Unterschied zu den Checkboxen in  wird nicht

für jede Checkbox ein individuelles name‐
Attribut angegeben, sondern über den gleichen

Wert speisen und die eckigen Klammern D C die Checkboxen gruppiert. Im $_GET‐
Array wird die Auswahl dieser Checkboxen in
einem inneren indizierten Array mit dem Schlüs‐

sel speisen zusammengefasst. Auch hier gilt,

wenn kein value vergeben wurde, erscheint im

$_GET‐Array lediglich ein on zu dem nicht aus‐
sagekräftigen Schlüssel des indizierten Array
(Der Eintrag $_GET["speisen"][0] ent‐
spricht der ersten Checkbox im HTML‐Code mit

dem name‐Attribut speisen[]). Erst ein
value liefert einen verwertbaren Wert.

 In dieser Zeile wird eine Selectbox mit dem

HTML‐Element select definiert. Die einzelnen
Auswahlmöglichkeiten werden über jeweils ein
option‐Tag hinterlegt. Der ausgewählte Eintrag
erscheint mit dem name des select‐Elements

als Schlüssel im $_GET‐Array. Bei Selectboxen
wird immer ein Schlüssel übertragen, auch wenn
der Nutzer keine Auswahl getroffen hat.

 Vergleichbar zu , allerdings haben hier die

option‐Tags value‐Attribute. In dem Fall wird
nicht der Wert übertragen, den der Nutzer sieht,

sondern der Wert von value, den Sie hinterlegt
haben.

 Hier wird eine weitere Selectbox definiert, im Unterschied zu den vorherigen hat das

select‐Element das Attribut multiple. Dies erlaubt dem Nutzer, mehrere Optionen aus

der Selectbox zu wählen. Damit im $_GET‐Array alle ausgewählten Einträge übermittelt

werden, muss das name‐Attribut des select‐Elements eckige Klammern D C haben,

damit die Werte als Array übertragen werden. Wird als name ein Schlüssel ohne die Klam‐
mern angegeben, wird nur die letzte ausgewählte Option als Wert übertragen.

 Ausgabe des $_GET‐Array in der Datei

 „form‐elemente.php“



Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 100 © HERDT‐Verlag

 Hier wird ein mehrzeiliges Eingabefeld definiert. Die HTML‐Syntax unterscheidet sich von

den meisten anderen Formularelementen, da nicht nur ein öffnendes textarea‐Tag
benötigt wird, sondern immer auch ein schließendes. Bei textarea‐Elementen wird ein
Schlüssel übertragen, auch wenn der Nutzer keine Eingabe vorgenommen hat.

HTML5 bietet neue Formularelemente, die zum Teil mit einer implizierten Validierung
einhergehen, z. B. werden E‐Mail‐Adressen auf Gültigkeit überprüft. Als PHP‐Entwickler
dürfen Sie sich nicht auf diese Validierung im Browser verlassen. Einerseits beherrschen noch
nicht alle Browser HTML5 oder nur im begrenzten Umfang, andererseits sind die Validierun‐
gen im Browser sehr minimalistisch. Die Eingabe von aaa@bbb wird als gültige E‐Mail‐Adresse
erkannt. Die Korrektheit der Eingaben muss immer serverseitig mit PHP überprüft werden.

Formulare mit Checkboxen und Radiobuttons

Checkboxen und Radiobuttons bieten eine Besonderheit, die Sie bei der Auswertung mit PHP

berücksichtigen müssen: Diese name‐Attribute werden aus dem Formular nur übermittelt, wenn
sie ausgewählt bzw. angeklickt wurden.

Beispiel: formular‐2.html

Es wird zunächst eine HTML‐Datei erstellt, in der ein Formular mit einer Gruppe von Checkboxen
und einer Gruppe von Radiobuttons erstellt wird.

 <form action="formular_auswertung-2.php" method="POST">

 <p>Interessen:
 <input type="checkbox" name="interesse[]" value="Kultur">
 Kultur
 <input type="checkbox" name="interesse[]" value="Musik"> Musik
 <input type="checkbox" name="interesse[]" value="Natur"> Natur
 <input type="checkbox" name="interesse[]" value="Sport"> Sport

 </p>
 <p>Zahlungsart:
 <input type="radio" name="zahlung" value="bar"> bar
 <input type="radio" name="zahlung" value="Scheck"> Scheck
 <input type="radio" name="zahlung" value="Überweisung">
 Überweisung
 </p>
 <p><input type="submit" name="absenden" value="Abschicken">
 <input type="reset" value="Zurücksetzen"></p>
</form>

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 101

 Um Checkboxen für die Auswertung mit
PHP vorzubereiten, muss im Formular
jede Gruppe von Checkboxen den
gleichen Namen – und zusätzlich
folgende eckige Klammern D C –
erhalten. Der Eingabename interesse
wird damit als Array‐Variable
gekennzeichnet, die mehrere Werte
aufnehmen kann.

 Im Formular wird eine Gruppe von
Radiobuttons bereitgestellt. Hier ist für

alle drei Radiobuttons dasselbe name‐
Attribut vergeben, damit diese
miteinander korrespondieren. Für jeden

Radiobutton wird ein value‐Attribut
vergeben, dessen Wert bei der Auswahl
übergeben wird.

Beispiel: formular_auswertung‐2.php

 <?php
 echo "<pre>";

 print_r($_POST);
 echo "</pre>";

 if (!empty($_POST["interesse"])) {
 echo "<p>Folgende Interessen wurden angegeben:
";
 echo implode(", ", $_POST["interesse"]) . "</p>"; }

?>

 Mit print_r() wird ausgegeben, welche Daten

aus dem Formular übermittelt wurden. Da im
Formular kein Radiobutton ausgewählt wurde,

fehlt die Variable $_POST["zahlung"] in der
Liste der übermittelten Variablen. Die Schalt‐
fläche zum Absenden des Formulars hingegen
wird in dieser Liste aufgeführt.

 Es erfolgt die Prüfung, ob eine Checkbox im
Formular ausgewählt wurde. Falls der Nutzer eine
Auswahl getroffen hat, fällt diese Prüfung positiv
aus, der folgende Anweisungsblock wird dann
ausgeführt.

 Über die Array‐Funktion implode() werden die
Werte aus der Variablen

$_POST["interesse"] ausgelesen, mit
Komma getrennt zusammengeführt und als
Zeichenkette ausgegeben.

Formular, aus dem Daten übertragen werden

 Anzeige der Beispieldatei
„formular_auswertung‐2.php“

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 102 © HERDT‐Verlag

Prüfung auf Existenz und Inhalt übergebener Schlüssel und Werte

Um Formulardaten flexibel auswerten zu können, können Sie mit PHP abfragen, ob

 Schlüssel vorhanden sind, also übertragen wurden oder

 Werte leer sind oder einen bestimmten Wert haben.

Mit isset() prüfen Sie die Existenz der in den Klammern

angegebenen Variablen. Existiert die Variable, wird TRUE
zurückgeliefert, ansonsten FALSE. isset() wird häufig in
Verbindung mit der if‐Anweisung verwendet, damit ein
Anweisungsblock, der bestimmte Werte erwartet, nur dann
ausgeführt wird, wenn der Wert auch gesetzt ist. Zur Prüfung

mit isset() eignen sich folgende Formularelemente:

 Checkboxen  Radiobuttons  Submit‐Schaltflächen

Mit empty() prüfen Sie, ob eine angegebene Variable einen
Wert enthält. Ist die geprüfte Variable nicht leer und hat sie

einen von 0 unterschiedlichen Wert, liefert empty() FALSE
zurück, ansonsten TRUE.

Text‐Eingabefelder werden bei der Übertragung von Formulardaten immer übermittelt, auch
wenn kein Wert eingetragen wurde. In diesen Fällen hilft die Überprüfung mit empty(). Dies
gehört zu den gängigen Methoden, um zu prüfen, ob Pflichtfelder in Formularen gefüllt wurden.

Leerzeichen in Text‐Eingabefeldern werden übertragen und sind als Werte im $_POST- bzw.
$_GET‐Array gespeichert. Eine Prüfung mit empty() schlägt hier fehl, auch wenn Sie im

Browser keinen Eintrag sehen. Die Prüfung eines Leerzeichens beantwortet empty() mit

FALSE. Hier empfiehlt es sich, die Prüfung um trim() zu erweitern. Diese PHP‐Funktion
entfernt Leerzeichen und Zeilenumbrüche am Anfang und Ende von Zeichenketten. if
(empty(trim($_POST["nachname"]))) liefert TRUE, auch wenn dort ausschließlich
Leerzeichen eingegeben wurden (mehr zu trim() vgl. Abschnitt 10.7).

Mehrere Absende‐Schaltflächen

Mit PHP können Sie prüfen, welche Submit‐Schaltfläche gedrückt wurde, die ein Formular abge‐
sendet hat. Zu diesem Zweck integrieren Sie in Ihr Formular beliebig viele Submit‐Schaltflächen
und geben den Schaltflächen eindeutige Namen, z. B.:

<input type="submit" name="eins">
<input type="submit" name="zwei">

In der auswertenden Datei können Sie gezielt abfragen, welche der Schaltflächen gedrückt
wurde. Da eine Submit‐Schaltfläche das Formular umgehend übermittelt, kann immer nur genau
eine Schaltfläche angeklickt worden sein. Formulare mit mehreren Submit‐Schaltflächen sind
eine Möglichkeit der Umsetzung, wenn dasselbe Formular verschiedene Aktionen auslösen kann.

isset(Variable);
if(isset(Variable)){
 Anweisungsblock;
}

empty(Variable);
if(!empty(Variable)){
 Anweisungsblock;
}

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 103

if(isset($_POST["eins"])){
 Anweisungsblock, wenn Schaltfläche eins gedrückt wurde
}
if(isset($_POST["zwei"])){
 Anweisungsblock, wenn Schaltfläche zwei gedrückt wurde
}

Beispiel: form_multi.html

Es wird zunächst eine HTML‐Datei erstellt, die mehrere Submit‐Schaltflächen zum Absenden des
Formulars hat. In der auswertenden Datei wird geprüft, welche Schaltfläche betätigt wurde,
sodass eine entsprechende Aktion ausgeführt werden kann.

 <h1>Berechnungen mit zwei Zahlen</h1>
<p>Bitte geben Sie zwei Zahlen ein: </p>

<form action="form_multi-auswertung.php" method="POST">
 <p>Erste Zahl: <input type="text" name="zahl1"></p>
 <p>Zweite Zahl: <input type="text" name="zahl2"></p>

 <p><input type="submit" name="mal" value="Zahlen multiplizieren">

 <input type="submit" name="plus" value="Zahlen addieren"></p>
</form>

 Über das action‐Attribut im form‐Tag wird die Ziel‐PHP‐Datei festgelegt, an welche die
Formulardaten übermittelt werden sollen.

 Es werden zwei Submit‐Schaltflächen in das Formular integriert. Über die Schaltfläche mit
der Bezeichnung mal sollen die beiden eingegebenen Zahlen miteinander multipliziert
werden.

 Mit der Schaltfläche plus sollen die Zahlen hingegen addiert werden.

Beispiel: form_multi‐auswertung.php

 <?php

 echo "<h1>Rechenergebnis</h1>";

 if (isset($_POST["mal"])) {
 $ergebnis = $_POST["zahl1"] * $_POST["zahl2"];
 echo "<p>" . $_POST["zahl1"] . " mal " . $_POST["zahl2"] . " ist
 gleich $ergebnis.</p>";
 }

 if (isset($_POST["plus"])) {
 $ergebnis = $_POST["zahl1"] + $_POST["zahl2"];
 echo "<p>" . $_POST["zahl1"] . " plus " . $_POST["zahl2"] . " ist
 gleich $ergebnis.</p>";
 }
?>

 Die Überschrift wird über eine echo‐Anweisung ausgegeben.

 Mithilfe der Funktion isset() wird geprüft, ob die Variable $_POST["mal"] über‐
mittelt wurde. Wenn die Prüfung TRUE ergibt, wurde die Schaltfläche Zahlen multiplizieren
zum Absenden des Formulars verwendet. Der folgende Anweisungsblock wird ausgeführt.

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 104 © HERDT‐Verlag

 Es wird geprüft, ob die Variable $_POST["plus"] vorhanden ist. Wenn die Prüfung TRUE
ergibt, wurde die Schaltfläche Zahlen addieren verwendet. Der folgende Anweisungsblock
wird ausgeführt, die Werte werden addiert und ausgegeben.

Anzeige der Beispieldateien „form_multi.html“ und „form_multi‐auswertung.php“ nach Absenden des
Formulars über die Schaltfläche „Zahlen addieren“

Dieses Beispiel setzt voraus, dass der Nutzer eine Schaltfläche drückt. Ein Formular kann
jedoch auch über die Return‐ bzw. Enter‐Taste abgesendet werden (wenn sich der Cursor in
einem Eingabefeld befindet). Beim Absenden durch Bedienen der Return‐Taste wird nur der
Wert einer Submit‐Schaltfläche übermittelt. Hier verhalten sich die verschiedenen Browser
teilweise unterschiedlich.

Formular und Auswertung in derselben PHP‐Datei

In der Praxis werden oftmals PHP‐Dateien verwendet (Dateiendung *.php), die nicht nur das
Formular, sondern auch den Code zur Verarbeitung des Formulars beinhalten. In größeren
Projekten können Sie so einige Seiten einsparen, außerdem können Sie Hinweise auf Fehler, die Sie
bei der Auswertung der Formulardaten ermittelt haben, direkt in das Formular einbauen, was die
umständliche Übergabe der Fehler und das erneute Laden der Ausgangsdatei überflüssig macht.

Um mit einem Formular auf dieselbe Datei zu verweisen, in dem das Formular hinterlegt ist,

haben Sie über das action‐Attribut des HTML‐Tags <form> folgende Möglichkeiten. Notieren

Sie im action‐Attribut:

 den eigenen Dateinamen, z. B. formular.php

 die PHP‐Variable $_SERVER["SCRIPT_NAME"] ($_SERVER gehört zu den
superglobalen Variablen und liefert Informationen über den Webserver. Der Eintrag

SCRIPT_NAME enthält den Namen der Datei, die aufgerufen ist)

 A, also action="?" (nicht empfohlen)

 Leerwert, also action="" (nicht empfohlen)

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 105

Beispiel: selbstverweis.php

Es wird eine PHP‐Datei mit einem Formular erstellt. Mit dem Formular können Sie die Hinter‐
grundfarbe der Datei steuern. Durch Absenden des Formulars wird die Seite selbst mit der
gewählten Hintergrundfarbe aufgerufen.

<body style="background: <?php if (isset($_POST["hintergrund"])) echo
 $_POST["hintergrund"]; ?>">
 <h1>Hintergrundfarbe wählen</h1>
 Wählen Sie eine Hintergrundfarbe für die Datei aus:

 <form action="<?php echo $_SERVER["SCRIPT_NAME"]; ?>"
 method="POST">
 <p><input type="radio" name="hintergrund" value="#FFFF00"> gelb
 <input type="radio" name="hintergrund" value="#8FEC95">
 hellgrün
 <input type="radio" name="hintergrund" value="#FFA000"> orange
 <input type="radio" name="hintergrund" value="#FFFFFF">
 weiß</p>
 <p><input type="submit" name="absenden" value="Absenden"></p>
 </form>
 <?php

 if (isset($_POST["absenden"]) && isset($_POST["hintergrund"])) {
 echo "<p>Ihre Auswahl wird als Hintergrundfarbe
 angezeigt.</p>";
 }
 ?>
</body>

 Im HTML‐Tag <body> wird über PHP der Wert der Farbwert für die CSS‐Eigenschaft

background gesetzt und damit die Hintergrundfarbe für diese Datei festgelegt. Dies

geschieht in Abhängigkeit von der aus dem Formular übermittelten Variable hintergrund.
Damit es nicht zu einer PHP‐notice im Browser kommt, wird zusätzlich über isset()
abgefragt, ob die Variable auch gesetzt ist.

 Im action‐Parameter des HTML‐Tags <form> wird angegeben, dass das Formular „an sich
selbst“ gesendet werden soll. Dieselbe Datei mit dem HTML‐Formular wird auch zur Auswer‐
tung der übertragenen Formulardaten verwendet.

 Es wird geprüft, ob die Variablen absenden und hintergrund aus dem Formular über‐

mittelt wurden. Die Prüfungen sind verknüpft: Nur wenn beide Prüfungen TRUE zurückliefern
(also das Formular abgesendet UND eine Farbe ausgewählt wurde), wird die anschließende

echo‐Anweisung ausgeführt.

Anzeige der Beispieldatei „selbstverweis.php“

Lizenziert für ComCave College GmbH

 7 Mit Formularen arbeiten

 106 © HERDT‐Verlag

7.3 Übungen

Übung 1: Ein Formular für eine Umfrage erstellen

Level

Zeit ca. 15 min

Übungsinhalte  HTML‐Formulare

 Formulare mit PHP auswerten

 Ausgabe von Formular‐Daten

 Überprüfung auf Formular‐Eingaben

Übungsdatei ‐‐

Ergebnisdateien uebung_formular.html, uebung_auswertung.php

Erstellen Sie das nachstehende Formular für die Umfrage und speichern Sie es unter dem Namen
uebung_formular.html.

Ausgabe „uebung_formular.html“

Geben Sie nach dem Absenden des Formulars eine Bestätigungsseite aus. Diese Bestätigungsseite
soll die vorher eingegebenen Daten zeigen. Speichern Sie die Datei unter dem Namen
uebung_auswertung.php. Überprüfen Sie auch, ob eine Nachricht eingegeben wurde und geben
Sie keine aus, falls keine Nachricht gesendet wurde.

Lizenziert für ComCave College GmbH

Mit Formularen arbeiten 7

 © HERDT‐Verlag 107

Ausgabe der Ergebnisdatei „uebung_auswertung.php“

Übung 2: Informationen über ein Formular anfordern

Level

Zeit ca. 15 min

Übungsinhalte  HTML‐Formulare

 Formulare mit PHP auswerten

 Ausgabe von Formular‐Daten

Übungsdatei ‐‐

Ergebnisdatei uebung_formular2.php

Erstellen Sie eine neue PHP‐Datei (uebung_formular2.php) mit dem nachstehenden Formular. Nach
dem Absenden des Formulars soll die Auswertung der Formulardaten in derselben Datei vorge‐
nommen werden. Überprüfen Sie, ob die Formularinhalte übergeben werden. Füllen Sie die Text‐
felder wieder mit den Eingaben und markieren Sie den Radiobutton, welcher ausgewählt wurde, als

checked. Bestätigen Sie dem Nutzer, mit welchem Anliegen er das Formular ausgefüllt hat.

Ausgabe der Beispiellösung (Datei „uebung_formular2.php“)

Lizenziert für ComCave College GmbH

 8 Funktionen

 108 © HERDT‐Verlag

8
8. Funktionen

Beispieldateien: Dateien aus Ordner Kap08

8.1 Funktionen erstellen und aufrufen

Was sind Funktionen?

Funktionen sind eigenständige Programmteile, die vom Skript beliebig oft aufgerufen und abge‐
arbeitet werden können. Funktionen beinhalten Anweisungen, die innerhalb des Programms
oder innerhalb eines Projekts mit mehreren Programmdateien mehrmals benötigt werden.
Anstatt die Anweisungen mehrfach im Programm zu codieren, wird die entsprechende Funktion
einmalig definiert und an den gewünschten Stellen aufgerufen, um die Anweisungen der
Funktion dort auszuführen.

PHP bietet eine Vielzahl vordefinierter Funktionen, um bestimmte Standardaufgaben zu lösen.
Funktionen, die Sie selbst zur Lösung Ihrer Aufgaben erstellen, werden benutzerdefinierte
Funktionen genannt.

Vorteile von Funktionen

 Immer wiederkehrende Abläufe werden nur einmal programmiert und können danach
beliebig oft ausgeführt werden.

 Der Programmcode wird durch Funktionen strukturiert, lässt sich leichter nachvollziehen,
ist dadurch übersichtlicher und einfacher zu pflegen.

 Änderungen am Programm lassen sich schneller und einfacher durchführen, da eine Ände‐
rung nur in der Funktion nötig ist.

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 109

Aufruf einer Funktion

Eine Funktion wird erst ausgeführt, wenn sie im Programm aufgerufen wird. Dies geschieht über
den Namen der Funktion, gefolgt von einem runden Klammerpaar F E. In den runden Klam‐
mern können je nach Definition ein oder mehrere Parameter stehen, die der Funktion übergeben
werden und dort verarbeitet werden. Unabhängig davon, wo eine Funktion im PHP‐Code steht,
wird der Funktionsblock bei der zeilenweisen Abarbeitung eines PHP‐Skripts übersprungen. Die
Funktion wird ausschließlich durch einen expliziten Aufruf ausgeführt.

Das eigentliche PHP‐Skript wird von oben nach unten abgearbeitet . Der Funktionsaufruf 
erzwingt einen Sprung zur angegebenen Funktion. Jetzt werden die Anweisungen innerhalb der
Funktion abgearbeitet . Ist das Ende der Funktion erreicht, wird zum Programm zurückgesprun‐
gen . Das PHP‐Skript wird hinter dem Funktionsaufruf weiter zeilenweise ausgeführt .

An welcher Stelle im PHP‐Skript die Funktion definiert wird, spielt keine Rolle. Daher ist es trotz
der zeilenweisen Abarbeitung des Skripts möglich, eine Funktion aufzurufen, die weiter oben steht
oder erst weiter unten definiert wird.

Zum guten Programmierstil gehört es jedoch, alle selbst geschriebene Funktionen zu bündeln –
entweder am Anfang oder am Ende eines Skripts. Oder diese in separate Dateien auszulagern
(mehr dazu am Ende dieses Kapitels). So strukturieren Sie Ihre PHP‐Datei und PHP‐Code ist damit
einfacher und besser zu pflegen.

Eine Funktion erstellen

Syntax und Beschreibung der function‐Anweisung

function name([Parameter]) {
 Anweisungsblock;
}

 Das reservierte Schlüsselwort function leitet eine Funktion ein.

name ist die Bezeichnung der Funktion (Funktionsname) und ist frei wählbar. Für den
Namen einer Funktion gelten folgende Regeln:

 Der Funktionsname darf nur aus Buchstaben, Ziffern und dem Unterstrich : bestehen.

 Das erste Zeichen muss ein Buchstabe oder ein Unterstrich sein.

 






Lizenziert für ComCave College GmbH

 8 Funktionen

 110 © HERDT‐Verlag

 Verboten sind Umlaute, das ß und alle Sonderzeichen außer dem Unterstrich :.

 Sowohl Groß‐ als auch Kleinbuchstaben dürfen verwendet werden, allerdings:

 Funktionsnamen sind nicht Case‐sensitiv: bei Funktionsnamen unterscheidet der PHP‐
Interpreter nicht zwischen Groß‐ und Kleinschreibung.

 Der Name darf nicht identisch mit einem sogenannten reservierten Wort (z. B. Befehl
aus PHP) sein.

 In den runden Klammern werden die Bezeichnungen der einzelnen Parameter (auch Über‐
gabewerte genannt) angegeben, für die beim Aufruf der Funktion Werte übergeben werden
können. Im Funktionskopf können beliebig viele (auch keine) Parameter definiert werden.
Die einzelnen Parameter werden durch Kommata voneinander getrennt.

 Das Schlüsselwort function, der Funktionsname, die runden Klammern und die
Parameter stellen gemeinsam den Funktionskopf dar.

Der Funktionsname sollte einen Bezug zu der Aufgabe haben, welche die Funktion erfüllt. Eine

Funktion, die z. B. das Quadrat einer Zahl berechnet, können Sie mit quadratzahl() oder
berechnung_quadrat() benennen.

Besteht ein Funktionsname aus mehreren Begriffen, können die einzelnen Begriffe durch den

Unterstrich : getrennt werden, z. B. berechne_quadrat_zahl(). Alternativ können Sie
die CamelCase‐Schreibweise verwenden, z. B. berechneQuadratZahl(). Die gewählte
Schreibweise sollte im Skript einheitlich verwendet werden.

Eine Funktion mit return‐Anweisung erstellen

Syntax und Beschreibung der return‐Anweisung

 Mit der return‐Anweisung
gibt die Funktion einen Wert
in den Programmablauf
zurück.

 Sobald die return‐
Anweisung ausgeführt wird,
wird eine Funktion verlassen und es erfolgt eine Rückkehr an die aufrufende Stelle. Eventuell
folgende Programmzeilen innerhalb der Funktion werden nicht mehr ausgeführt.

 Die return‐Anweisung kann auch ohne Rückgabewert ausschließlich zum Verlassen einer
Funktion verwendet werden.

Wenn Sie kein return definiert haben, geben Funktionen trotzdem einen Wert zurück, und

zwar NULL. Dieser ist notwendig, damit die aufrufende Stelle weiß, dass die Abarbeitung der
Funktion beendet ist.

function name([Parameter]){
 Anweisungsblock;
 return [$wert];
 }

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 111

Datentypen für Parameter und Rückgabewert definieren

PHP 7.0 hat die Definition von Datentypen in Funktionen stark weiter entwickelt. Funktions‐
parameter können nun auch auf skalare Werte (integer, string, float, boolean) festgelegt werden.
Bis PHP 5.6 waren die Datentypen auf array und object beschränkt. Vollständig neu ist die
Definition des Datentyps für den Rückgabewert. Die beiden Neuerungen haben den großen
Vorteil, dass Sie Ihr PHP‐Skript besser kontrollieren können. Wird eine Funktion z. B. mit einem
string aufgerufen, obwohl Sie den Parameter als integer definiert haben, gibt Ihnen PHP eine
Fehlermeldung aus.

function name([Datentyp] [Parameter]):[Datentyp]{
 Anweisungsblock;
}

 Der Datentyp wird vor dem Parameter notiert (z. B. int, string). Damit legen Sie fest, mit

welchem Datentyp die Funktion aufgerufen werden darf. Die Angabe des Datentyps ist optio‐
nal. Wird kein Datentyp angegeben, greift die automatische Datentyp‐Zuweisung von PHP.

 Hinter der runden Klammer E und vor der geschweiften Klammer M kann optional der
Datentyp für den Rückgabewert angegeben werden (z. B. int, string). Der Datentypdefinition
wird der Doppelpunkt 5 vorangestellt. Damit legen Sie fest, von welchem Datentyp der
Rückgabewert der Funktion ist.

 Haben Sie z. B. den Datentyp int für Integer angegeben, führt ein Rückgabewert vom
Datentyp string zu einer Fehlermeldung. Dabei greift die automatische Datentyp‐
Konvertierung von PHP. Kann ein Wert umgewandelt werden (z. B. von int nach string),
kommt es zu einer Fehlermeldung vom Typ notice. Kann ein Wert nicht umgewandelt
werden (z. B. array nach int), kommt es zu einem fatal error, das Skript bricht ab.

Eine Funktion aufrufen

Syntax und Beschreibung eines Funktionsaufrufs

 Eine Funktion können Sie von jeder beliebigen Stelle im
PHP‐Code aufrufen.

 Eine Funktion wird mit ihrem Namen und folgendem
runden Klammernpaar F E aufgerufen.

 Die runden Klammern nach dem Funktionsnamen können
Parameter zur Übergabe von Werten enthalten. Falls keine
Werte übergeben werden, bleiben die Klammern leer.

 Ob und welche Parameter übergeben werden können, wird durch die Funktionsdefinition
bestimmt.

 Sie können eine Funktion auch aus einer anderen Funktion heraus aufrufen.

 Eine Funktion kann auch sich selbst aufrufen (rekursiver Aufruf).

<?php
 Anweisungsblock
 funktionsname();
 Anweisungsblock
?>

Lizenziert für ComCave College GmbH

 8 Funktionen

 112 © HERDT‐Verlag

8.2 Mit Funktionen arbeiten

Funktionen ohne Parameter

Bei einer Funktion ohne Parameter werden bei jedem Aufruf dieselben Anweisungen ausgeführt.

Beispiel: funktionen‐1.php

 <?php
 // Funktionsdefinitionen

 function textausgabe() {
 echo "<p>Funktionen erleichtern wiederkehrende Aufgaben.</p>";
 }

 function farbtabelle() {
 echo "<table>
 <tr>
 <td style='background:#FF0000;width:100px;'>rot</td>
 <td style='background:#FFFF00;width:100px;'>gelb</td>
 <td style='background:#0000FF;width:100px;'>blau</td>
 </tr>
 </table>";
 }
 // normaler Programmablauf

 textausgabe();

 farbtabelle();

 textausgabe();

 farbtabelle ();

 TEXTausgabe(); // nicht Case-Sensitiv!
?>

 Die Funktion textausgabe()wird
definiert, in der ein einfacher Text
ausgegeben wird.

 Es erfolgt die Definition der Funktion

farbtabelle(), die eine einfache
Tabelle mit verschiedenfarbigem
Hintergrund für jede Zelle ausgibt.

 Die Funktion textausgabe() wird
aufgerufen.

 Die Funktion farbtabelle() wird
ausgeführt.

 Die Funktion wird hier teilweise mit
Großbuchstaben im Funktionsnamen
TEXTausgabe()aufgerufen. Da
Funktionen nicht Case‐Sensitiv sind, wird
die Funktion ebenfalls ausgeführt.

 Anzeige der Beispieldatei „funktionen‐1.php“

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 113

Funktionen mit einem oder mehreren Parametern

Bei einer Funktion mit Parametern können individuelle Werte an die Funktion übergeben
werden. Damit kann eine Funktion die gleiche Aufgabe mit variablen Werten ausführen. Hierbei
kann ein Parameter eine Zeichenkette, ein Zahlenwert, eine Konstante oder eine Variable sein,
aber auch Arrays oder Objekte können Funktionen übergeben werden.

Beispiel: funktionen‐2.php

Im folgenden Skript werden mathematische Berechnungen mithilfe von Funktionen mit jeweils
einem Parameter durchgeführt.

 <?php

 function quadrat($zahl) {
 $ergebnis = $zahl * $zahl;
 echo "<p>Die Quadratzahl von $zahl ist:
 $ergebnis.</p>";
 }

 function wurzel($zahl) {
 $ergebnis = sqrt($zahl);
 echo "<p>Die Wurzel aus $zahl ist:
 $ergebnis.</p>";
 }

 quadrat(9);

 wurzel(64);

 quadrat(5);

 wurzel(49);
?>

/ Die Funktionen quadrat() und

wurzel() werden jeweils zweimal
aufgerufen. Der übergebene Parameter
(die Zahl in der Klammer) ist bei jedem
Aufruf ein anderer.

 Der Wert in der Klammer wird beim

Funktionsaufruf der Variablen $zahl
zugewiesen. Diese Zuweisung geschieht
bei jedem Funktionsaufruf erneut. Mit der

Variablen $zahl wird beim Aufruf beider

Funktionen die Variable $ergebnis
berechnet und am Bildschirm
ausgegeben.

 Aus einer Funktion heraus können andere Funktionen aufgerufen werden, in diesem Fall
eine von PHP vordefinierte mathematische Funktion sqrt() zur Berechnung der
Quadratwurzel.

 Anzeige der Datei „funktionen‐2.php“

Lizenziert für ComCave College GmbH

 8 Funktionen

 114 © HERDT‐Verlag

Beispiel: funktionen‐3.php

Bei Funktionen mit mehreren Parametern werden diese in der Reihenfolge des Aufrufs über‐
geben. Der erste Parameter im Funktionsaufruf wird dem ersten Parameter in der Funktions‐
deklaration übergeben, der zweite dem zweiten usw. Die einzelnen Parameter werden mit
Kommata voneinander getrennt.

 <?php

 function honorar_berechnen($dozent, $stundenzahl,
 $honorarsatz) {
 $honorar = $stundenzahl * $honorarsatz;
 echo "<p>$dozent war $stundenzahl Stunden im Einsatz und
 hat $honorar Euro verdient.</p>";
 }

 honorar_berechnen("Peter Schmidt", 15, 45);

 honorar_berechnen("Arndt Hoffmann", 38, 29.5);

 honorar_berechnen("Petra Meyer", 27, 62);
?>

 Die Funktion

honorar_berechnen()
wurde mit 3 Parametern

definiert: $dozent,
$stundenzahl,
$honorarsatz.

 Beim Aufruf der Funktion
werden die drei geforderten
Parameter durch Kommata
getrennt übergeben.

Wenn Sie einer Funktion weniger Parameter übergeben als im Funktionskopf definiert sind,
erhalten Sie eine entsprechende Fehlermeldung (Ausnahme: Funktionen mit optionalen
Parametern). Übergeben Sie einer Funktion mehr Parameter, als im Funktionskopf definiert sind,
kommt es zu keiner Fehlermeldung, die überschüssigen Werte sind dann keinem Parameter im
Funktionskopf zugewiesen. Allerdings können die überzähligen Werte über die PHP‐Funktion

func_get_args()ermittelt werden.

Optionale Parameter

Standardmäßig müssen Sie einer Funktion mindestens so viele Parameter übergeben, wie im
Funktionskopf deklariert sind. Fehlt ein Wert im Funktionsaufruf, gibt PHP eine Meldung der
Kategorie warning aus.

function name(Parameter = Standardwert) {
 Anweisungsblock;
}

Anzeige der Beispieldatei „funktionen‐3.php“

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 115

Sie können eine Variable in der Funktionsdeklaration jedoch mit einem Standardwert versehen.
Damit deklarieren Sie diesen Parameter zu einem optionalen Parameter. Der Standardwert wird
auch als Vorgabewert bezeichnet. Für optionale Parameter können Sie, müssen jedoch keine
Werte übergeben.

PHP arbeitet dann wie folgt: Wird im Funktionsaufruf ein Wert für den optionalen Parameter
übergeben, verwendet die Funktion den Übergabewert für diese Variable, der Standardwert wird
dann ignoriert. Wird hingegen kein Wert für diesen Parameter übergeben, verwendet die Funktion
den Standardwert. Ein fehlender Wert führt nicht zu einer Fehlermeldung

Zu beachten ist dabei die Reihenfolge von nicht‐optionalen und optionalen Parametern. Para‐
meter, die einen Wert erwarten, müssen in der Funktionsdeklaration zuerst angegeben werden,
erst dahinter folgen die optionalen Parameter.

Beispiel: optional.php

 <?php

 function berechne($anzahl, $preis = 45, $waehrung = "Euro"){
 echo "<p>Ihr Einkauf kostet " . ($anzahl * $preis) . "
 $waehrung.</p>";
 }

 // normaler Aufruf der Funktion
 berechne(7, 39.99, "Dollar");

 // Parameter 2 und 3: Standardwerte werden verwendet
 berechne(10);

 // Parameter 3: Standardwert wird verwendet
 berechne(15, 29);
?>

 Die Funktion berechne() wurde mit 3 Para‐

metern programmiert: $anzahl, $preis,
$waehrung. Für die letzten beiden Parameter
sind Standardwerte definiert worden. Es handelt
sich also um optionale Parameter, deren Werte
verwendet werden, wenn der zweite und/oder
dritte Parameter beim Funktionsaufruf nicht ange‐
geben wird.

 Die Funktion wird mit allen definierten Para‐
metern aufgerufen.

 Die Funktion wird mit nur einem Parameter aufgerufen. PHP interpretiert den angegebenen
Parameter automatisch als den ersten Parameter und weist den Wert der Variablen

$anzahl zu. Der zweiten und dritten Variablen im Funktionskopf werden die
Standardwerte zugewiesen und für die Ausführung der Funktion verwendet.

Anzeige der Beispieldatei „optional.php“

Lizenziert für ComCave College GmbH

 8 Funktionen

 116 © HERDT‐Verlag

 Entsprechend erfolgt der Aufruf mit zwei Werten. Die Zahl 29 wird der zweiten Variable
$preis zugewiesen, der Standardwert wird hier nicht verwendet. Der dritte Parameter
erhält wieder den Standardwert.

Parameterübergabe per Wert oder per Referenz

Wenn Sie eine Variable per Wert als Parameter an eine Funktion übergeben, dann erhält die
Funktion eine Kopie der übergebenen Variablen. Die Übergabe der Parameter als Kopie wird auch
als call‐by‐value bezeichnet und stellt das Standardverhalten der Parameterübergabe dar. Wenn
der Wert einer übergebenen Variablen in der Funktion geändert wird, wird nur die Kopie des
Parametes innerhalb der Funktion geändert. Eine Veränderung der Kopie hat keinerlei Rückwirkung
auf den Parameter, der vom Haupt‐PHP‐Skript übergeben wurde, der Variablenwert im Haupt‐
Skript bleibt unverändert.

Alternativ gibt es die Möglichkeit, eine Variable per Referenz zu übergeben. Dies erzielen Sie durch
ein dem Parameter vorangestelltem B‐Zeichen. In dem Fall wird nicht nur der Wert innerhalb der
Funktion, sondern auch der Wert im Haupt‐Skript verändert, da Sie nicht mit einer Kopie, sondern
mit der Variablen selbst arbeiten. Diese Vorgehensweise nennt man call‐by‐reference.

Das Verhalten von call‐by‐reference wird in folgendem Code‐Beispiel deutlich:

Beispiel: by_reference.php

 <?php

 function quadrat($value) {
 echo "<p>Die Quadratzahl von $value ist: ";
 $value = $value * $value;
 echo $value . "</p>";
 }

 function quadrat_referenz(&$value) {
 echo "<p>Die Quadratzahl von $value ist: ";
 $value = $value * $value;
 echo $value . "</p>";
 }
 $zahl = 2;
 echo '<p>Ausgangswert von $zahl: ' . $zahl .
 '</p>';
 echo "call-by-value:";
 for ($i = 1; $i <= 3; $i++) {

 quadrat($zahl); // call-by-value
 }
 echo "<p>call-by-reference:</p>";
 for ($i = 1; $i <= 3; $i++) {

 quadrat_referenz($zahl); // call-by-reference
 }
?>

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 117

 Die Funktion quadrat() wird definiert. Sie
berechnet auf Basis des Übergabewertes

$zahl die Quadratzahl und gibt sie aus. Diese
Funktion arbeitet mit der Parameterübergabe
als Wert (call‐by‐value).

 Die Funktion

quadrat_referenz()berechnet die
Quadratzahl von $zahl auf exakt die gleiche
Weise, arbeitet aber mit call‐by‐reference, d. h.,
Parameter werden als Referenz weiterver‐
arbeitet. Die Übergabe per Referenz bewirken
Sie durch das B ‐Zeichen im Funktionskopf vor
der Variablen $value. Beachten Sie auch, dass
der Variablenname im Funktionsaufruf und im
Funktionskopf nicht gleich lauten muss. Die
Zuweisung der Variablen geschieht durch die
Reihenfolge der Parameter, nicht durch deren
Namen.

 Die Funktion quadrat() wird in einer Schleife dreimal aufgerufen, die Quadratzahl von 2
wird berechnet (call‐by‐value) und ausgegeben. Die drei Funktionsaufrufe ergeben das

gleiche Ergebnis 4. Der Wert der Variablen $zahl außerhalb der Funktion bleibt
unverändert 2. Innerhalb der Funktion wird nur mit einer Kopie der Variablen gearbeitet.

 Die Funktion quadrat_referenz() arbeitet hingegen per call‐by‐reference durch das
im Funktionskopf verwendete B ‐Zeichen. Hier wird auch die Variable $zahl außerhalb
der Funktion durch die Berechnung verändert. Da die Funktion auch hier dreimal aufgerufen

wird, sehen Sie die Auswirkungen im Ergebnis des Funktionsaufrufs (4, 16, 256).

Die Parameterübergabe per Referenz kann nur in der Funktionsdeklaration festgelegt
werden. Bis zur PHP‐Version 5.3 konnte das Zeichen B auch im Funktionsaufruf notiert
werden, um einen Wert per Referenz zu übergeben. Ab PHP 5.4 führt der Einsatz des Zeichens B im Funktionsaufruf zum fatal error.

Rückgabewert per return‐Anweisung

Über die return‐Anweisung haben Sie die Möglichkeit, einen Wert an den Funktionsaufruf
zurückzugeben, der dort gespeichert und weiter verarbeitet werden kann. Der Rückgabewert

kann z. B. das Ergebnis einer Berechnung sein oder ein TRUE oder FALSE, falls eine Funktion
eine bestimmte Überprüfung durchführt.

Dabei ist zu beachten, dass eine return-Anweisung nicht nur den Rückgabewert an die
aufrufende Stelle zurückgibt, sondern auch die Ausführung der Funktion sofort beendet. Alle

Anweisungen nach einer return‐Anweisung werden nicht mehr ausgeführt. return kann auch
ohne einen konkreten Rückgabewert verwendet werden. Auch dies beendet sofort die
Abarbeitung der Funktion.

 Anzeige der Beispieldatei „by_reference.php“

Lizenziert für ComCave College GmbH

 8 Funktionen

 118 © HERDT‐Verlag

Beispiel: funktionen‐4.php

 <?php

 function addiere($zahl1, $zahl2) {

 $ergebnis = $zahl1 + $zahl2;

 return $ergebnis;
 }

 addiere(4, 3); // nur Ausführung der Funktion, keine
 // Ausgabe auf dem Bildschirm
 echo "<hr>";

 $summe = addiere(30, 19); // der Rückgabewert wird in einer
 // Variablen gespeichert
 echo $summe;
 echo "<hr>";

 echo addiere(17, 4); // direkte Ausgabe des Rückgabewertes
?>

 Die Funktion addiere() hat die beiden Para‐
meter $zahl1 und $zahl2.

 Die beiden Parameter werden innerhalb der Funk‐
tion addiert und das Ergebnis in der Variablen

$ergebnis gespeichert.

 Der Wert der Variablen $ergebnis wird mit der

Anweisung return an die aufrufende Stelle
zurückgegeben.

 Die Funktion wird mit den Werten 4 und 3 aufgerufen. Die Funktion wird ausgeführt. Das
Ergebnis 7 wird zurückgegeben, vom Funktionsaufruf jedoch nicht weiter verwendet. Das
PHP‐Skript würde zwar keine Fehlermeldung auswerfen, ein solcher Funktionsaufruf ohne
irgendeine Ausgabe oder Weiterverarbeitung des Ergebnisses wäre jedoch als Programmier‐
fehler zu bewerten.

 Das Ergebnis eines weiteren Funktionsaufrufs 49 wird der Variablen $summe zugewiesen
und in der folgenden Programmzeile ausgegeben. Das Speichern des Rückgabewertes einer
Funktion in einer Variablen wird häufig verwendet, wenn mit diesem Wert weitere
Operationen durchgeführt werden sollen.

 Der Funktionsaufruf gibt das Ergebnis 21 zurück. Das Ergebnis wird durch die vorangestellte
echo‐Anweisung sofort ausgegeben. Diese Methode wird oft verwendet, wenn eine Aus‐
gabe, aber keine Weiterverarbeitung des Wertes vorgenommen werden soll.

Eine Funktion in PHP kann immer nur einen Wert zurückgeben. Falls Sie mehrere Werte
zurückgeben möchten, speichern Sie diese in einem Array und geben dann das Array zurück. Im
Hauptskript können Sie dann auf die einzelnen Array‐Einträge zugreifen. In den Code‐Beispielen
finden Sie die Datei multi_return.php, in der Sie eine beispielhafte Umsetzung finden.

 Anzeige der Datei „funktionen‐4.php“

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 119

Datentyp‐Definition in Funktionen verwenden

Seit PHP 7.0 können Sie auch skalare Datentypen (int, float, string, boolean) für Funktionspara‐

meter definieren. Neu ist auch die Datentyp‐Festlegung für den return‐Wert. Das reduziert die
hohe Fehlertoleranz von PHP, welche das Arbeiten mit PHP im Gegensatz zu anderen Sprachen
wesentlich einfacher macht. Durch die Festlegung der Datentypen haben Sie eine größere Kontrolle
über Ihr PHP‐Skript. Wird eine Funktion mit einem Wert mit einem falschen Datentyp aufgerufen,
wirft PHP eine Fehlermeldung aus. Bei der Entwicklung entdecken Sie so potenzielle Fehlerquellen.

Beispiel: datentypen.php

 <?php

 function dividiere(int $zahl1, int $zahl2):int {

 echo "<p>Wert von \$zahl1: $zahl1</p>";
 echo "<p>Wert von \$zahl2: $zahl2</p>";

 $ergebnis = $zahl1 / $zahl2;
 echo "<p>Wert von \$ergebnis: $ergebnis</p>";

 return $ergebnis;
 }

 $rueckgabe = dividiere(10.5, "3ABC");
 // normaler Aufruf der Funktion

 echo "<p>Wert von \$rueckgabe: $rueckgabe</p>";
 echo "<p>Datentyp von \$rueckgabe: ".
 gettype($rueckgabe)."</p>";
?>

 Hier wird eine Funktion definiert. Den Funktionsparametern ist das Schlüsselwort int

vorangestellt. Damit legen Sie fest, dass die Funktion nur Werte vom Datentyp integer ver‐
wendet bzw. übergebene Werte in Integer umwandelt. Hinter der schließenden Klammer E
der Parameterdeklaration ist mit einem vorangestellten Doppelpunkt 5 das Schlüsselwort
int angegeben. Damit legen Sie fest, dass die Funktion ausschließlich einen Integer zurück‐
gibt bzw. dass der Rückgabewert versucht wird, in einen Integer zu wandeln.

 Die Funktion dividiere() wird hier mit zwei Parametern aufgerufen. Dabei hat der erste
Wert den Datentyp float, der zweite den Datentyp string. Bereits die Fehlermeldung in der
Abbildung zeigt, dass die übergebenen Werte nicht der Funktionsdefinition entspricht. Da
PHP hier die Werte durch die in PHP implizierte Datentypumwandlung erfolgreich umwan‐
deln kann, kommt es nur zu einer notice‐Meldung. Würde die Umwandlung fehlschlagen,
käme es zu einem fatal error und zum Abbruch des Skripts.

Lizenziert für ComCave College GmbH

 8 Funktionen

 120 © HERDT‐Verlag

 Hier werden die übergebenen Parameter
auf dem Bildschirm angezeigt. PHP hat

den Float‐Wert 10.5 und die Zeichenkette
3ABC in die integer‐Werte 10 und 3
umgewandelt.

 Hier wird die Division der beiden Werte
durchgeführt und ausgegeben. Das

Ergebnis 3.3333333333333 ist ein
Wert vom Datentyp float.

 Das Ergebnis wird zurückgegeben. Hier
greift die Datentyp‐Festlegung für den
Rückgabewert im Funktionskopf. PHP
konvertiert den Wert für die Rückgabe in
einen Integer. Ohne mögliche Datentyp‐
konvertierung käme es zu einem fatal
error. Die Datentypkonvertierung wäre
z. B. nicht möglich, wenn Sie den Rück‐

gabewert mit array festgelegt hätten.

 In der Kontrollausgabe können Sie das Ergebnis aus der Datentypkonvertierung des
Rückgabewertes beobachten. Es wird lediglich die Zahl 3 ausgegeben. Der Datentyp wird

zusätzlich über die PHP‐Funktion gettype () ausgegeben. Tatsächlich liefert hier PHP
einen Integer zurück.

Variadische Funktionen (variadic functions) mit ... verwenden

Variadisch beschreibt die Eigenschaft von Funktionen, dass die Anzahl der Parameter in der
Funktionsdeklaration (Funktionskopf) nicht zwingend festgelegt werden müssen. Selbst wenn Sie
eine Funktion mit drei Parametern deklariert haben, können Sie fünf Parameter übergeben, ohne

dass dies zum PHP‐Fehler führt. Über die Funktion func_get_args() können nicht dekla‐
rierte Variablen ermittelt werden.

Mit PHP 5.6 wurde dieses Prinzip erweitert. Über den Einsatz des Zeichens für die Auslassungs‐

punkte ... (drei Punkte, auch Ellipse oder Splat‐Operator genannt) können Funktionen jetzt mit
einer beliebigen Anzahl von Parametern aufgerufen werden. Ein Parameter im Funktionskopf,

dem die Auslassungszeichen vorangestellt sind, z. B. function(...$args), nimmt alle
Übergabeparameter in einem Array auf. Aber auch beim Aufruf einer Funktion können die
Auslassungspunkte verwendet werden, z. B. meinFunktionsAufruf(...$param). Hier
kann die Funktion mit einem Array aufgerufen werden, im Funktionskopf werden dann die
einzelnen Arrayeinträge auf die dort deklarierten Parameter verteilt.



Ausgabe der Datei „datentypen.php“

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 121

Variadische Parameter verwenden

Beispiel: variadic‐1.php (Auszug)

 <?php
 // Funktion mit variadischem Parameter

 function zeigeZutaten(...$args) {
 echo "";

 foreach ($args as $val) {
 echo "$val";
 }
 echo "";
 }

 zeigeZutaten("Butter", "Eier", "Mehl", "Salz");
?>

 Die Funktion zeigeZutaten()wird aufgebaut.
Als Parameter wird die Variable $args deklariert.
Dieser Variable wird das Auslassungszeichen ...
vorangestellt. Damit werden alle vier übergebenen

Parameter dem Array $args zugewiesen.

 Mit einer foreach‐Schleife wird das Array durch‐
laufen und jeder einzelne Arrayeintrag als Listen‐
eintrag ausgegeben.

 Im Funktionsaufruf zeigeZutaten() werden vier Parameter übergeben. Hier könnten

beliebig viele Parameter übergeben werden, wobei alle der Funktionsvariablen $args als
Array zugewiesen werden.

In der Beispieldatei variadic‐1.php finden Sie eine zweite Funktion: zeigeZutatenAlt(). Dort
wird die Alternative für ältere PHP‐Versionen gezeigt: Dort ist kein Parameter im Funktionskopf
deklariert. Der Funktionsaufruf findet ebenfalls mit vier Parametern statt, diese werden in der
Funktion über func_get_args()ermittelt und im Array $args gespeichert. Die weitere
Verarbeitung ist mit dem PHP‐Code oben identisch.

Bei der Verwendung von variadischen Parametern ist Folgendes zu beachten:

 Das Auslassungszeichen ... wird einer Variablen vorangestellt (mit oder ohne
Leerzeichen vor der Variablen).

 Die Variable mit dem Auslassungszeichen ... muss als letzter Parameter im Funktions‐
kopf deklariert werden. Dieser wird von den anderen Parametern mit einem Komma
getrennt. Folgen nach der Variablen für den variadischen Parameter weitere Variablen,
meldet PHP einen Fehler vom Typ fatal error.

 Ein variadischer Parameter kann nicht mit einem optionalen Parameter deklariert werden.

 Die Variable kann nur per call‐by‐value übergeben werden. Die Übergabe per call‐by‐
reference führt ebenfalls zum fatal error.

Lizenziert für ComCave College GmbH

 8 Funktionen

 122 © HERDT‐Verlag

Übergabe einer Parameterliste

Im vorherigen Beispiel wird der Parameter in der Funktionsdeklaration durch das vorangestellte

Auslassungszeichen ... zum variadischen Parameter. In gleicher Weise kann eine Funktion aber
auch auf variadische Weise aufgerufen werden.

Beispiel: variadic‐2.php (Auszug)

 <?php
 // Funktion mit Parameter für variable Anzahl von Parametern

 function personInfo($name, $vorname, $alter) {

 echo "<p>$vorname $name ist $alter Jahre alt.</p>";
 }

 $person = ['Müller', 'Peter', 29];

 personInfo(...$person);
?>

 Die Funktion personInfo()wird aufgebaut. Die
Parameterdeklaration im Funktionskopf entspricht
dem Standardaufbau von Funktionen. Es werden
drei Variablen deklariert, die jeweils einen
Parameter erwarten.

 Die übergebenen Parameter werden als Zeichen‐
kette auf dem Bildschirm ausgegeben.

 Hier wird ein Array über die Kurzschreibweise definiert. Dieses enthält drei Einträge.

 Die Funktion personInfo()wird mit dem zuvor erstellten Array aufgerufen. Der

Arrayvariablen wird das Auslassungszeichen ... vorangestellt. Daran erkennt PHP, dass
dieser Parameter nicht an einen einzelnen Parameter im Funktionskopf übergeben werden
soll, sondern dass es sich um eine Parameterliste handelt, die auf die einzelnen Parameter
im Funktionskopf verteilt werden soll.

Bei der Verwendung des Auslassungszeichens ... zur Übergabe einer Parameterliste ist
Folgendes zu beachten:

 Werden mehrere Parameter an die Funktion übergeben, darf die Übergabeliste nur als
letzter Parameter übergeben werden.

 Dem Parameter wird das Auslassungszeichens ... vorangestellt und von etwaigen
davorstehenden Parametern mit einem Komma getrennt.

 Der Parameter erwartet ein indiziertes Array oder ein traversables Objekt (wird in diesem
Buch nicht weiter vertieft). Eine Zeichenkette oder ein assoziatives Array führen zu einem
fatal error.

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 123

8.3 Der Gültigkeitsbereich von Variablen

Variablen, die Sie außerhalb einer Funktion im PHP‐Programm einsetzen, sind standardmäßig
innerhalb von Funktionen nicht definiert, also dort unbekannt. Das Gleiche gilt für Variablen
innerhalb von Funktionen, auf die Sie nicht im normalen Programmablauf zugreifen können.

Der Gültigkeitsbereich von Variablen (auch Namespace genannt) ergibt sich automatisch aus
dem Zusammenhang, in dem sie definiert wurden.

 Lokale Variablen sind nur innerhalb der Funktion gültig, in der sie definiert wurden. Wurde

die Variable im normalen Programmablauf definiert (außerhalb einer Funktion), steht sie
nicht innerhalb von Funktionen zur Verfügung. Dieses Verhalten ist der Standard.

 Lokale Variablen können zu globalen Variablen werden, indem Sie innerhalb einer Funktion

mit dem Schlüsselwort global bekannt machen, z. B. global $zahl. Damit heben Sie

für diese Variable die Grenze zwischen Funktion und Programmablauf auf. Eine als global
definierte Variable steht sowohl in der Funktion als auch außerhalb der Funktion zur
Verfügung. Das bedeutet zugleich, dass Veränderungen an der Variablen, sowohl im Haupt‐
Skript als auch innerhalb einer Funktion, die Variable immer beeinflussen.

 Superglobale Variablen sind von PHP vordefinierte Variablen, die Ihnen an jeder Stelle des
Skripts zur Verfügung stehen. Sie erkennen diese Variablen daran, dass sie mit den Zeichen O : beginnen und vollständig aus Großbuchstaben bestehen, z. B. $_POST. Superglobale
Variablen können Sie nicht selbst definieren. Auch wenn Sie sich an die beschriebene
Konvention zur Benennung dieser Variablen halten, erstellen Sie damit keine superglobalen
Variablen.

Im folgenden Beispiel werden die verschiedenen Typen von Variablen gegenübergestellt. Hierzu
wird ein Bestellformular für Äpfel erstellt. Anhand des PHP‐Codes im Auswertungsprogramm
wird gezeigt, wann welche Variablen gültig sind.

Beispiel: formular_funktion.html

 <h1>Apfelkauf</h1>
<p>Bitte geben Sie die gewünschte Menge ein und wählen Sie
 eine Apfelsorte:</p>

<form action="funktion_var.php" method="post">

 <p>Menge (in kg): <input type="text" name="menge"></p>
 <p>Apfelsorte:

 <input type="radio" name="sorte" value="Jonagold">
 Jonagold
 <input type="radio" name="sorte" value="Gala"> Gala
 <input type="radio" name="sorte" value="Elstar">
 Elstar</p>
 <p><input type="submit" value="Abschicken"></p>
</form>

Lizenziert für ComCave College GmbH

 8 Funktionen

 124 © HERDT‐Verlag

Es wird ein Formular aufgebaut, welches die POST‐
Methode zum Versenden verwendet. Das Formular
wird an das PHP‐Skript funktion_var.php gesendet.

 Das input‐Element mit dem name‐Attribut
menge wird programmiert, dieses kann vom PHP‐

Skript über die Variable $_POST['menge']
abgefragt werden.

 Das input‐Element vom Typ radio erhält als name
den Wert sorte und steht nach dem Absenden

des Formulars als $_POST['sorte'] zur
Verfügung.

Beispiel: funktion_var.php

 <?php

 error_reporting(E_ERROR | E_PARSE); // Keine notice-Fehler melden

 $bestellnummer = "ABC-12345";
 $bearbeiter = "Maria Schulze";

 function bestellung() {

 global $bestellnummer; // globale Variable

 echo "<p>Bestellnummer: " . $bestellnummer . "
";

 echo "Bearbeiter: " . $bearbeiter . "
";
 // lokale Variable - funktioniert hier nicht!

 echo "Die von Ihnen eingegebene Menge: " . $_POST["menge"] . "
 kg</p>";

 switch ($_POST["sorte"]) {
 case "Jonagold":
 $preis = $_POST["menge"] * 1.50;
 break;
 case "Gala":
 $preis = $_POST["menge"] * 1.65;
 break;
 case "Elstar":
 $preis = $_POST["menge"] * 2.00;
 break;
 }

 echo "<p>Ausgabe des Preises innerhalb der Funktion: $preis</p>";
 }

 echo "<p>Die von Ihnen gewählte Sorte: " . $_POST["sorte"] . "</p>";

 bestellung();

 echo "<p>Ausgabe des Preises außerhalb der Funktion: $preis</p>";
 // lokale Variable der Funktion - funktioniert hier nicht!
?>


 Anzeige Datei „formular_funktion.html“

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 125

Anzeige des Beispielprogramms „funktion_var.php“

Links ist das Error‐Reporting für notice deaktiviert. Rechts ist das Standard‐Error‐Reporting von PHP belas‐
sen, die notice‐Meldungen weisen bereits darauf hin, an welchen Stellen die Variablen unbekannt sind.

 notice‐Meldungen werden standardmäßig ausgegeben. In der rechten Abbildung wird

durch die Fehlermeldungen bereits deutlich, wo welche Variablen nicht bekannt sind.
Um die Anzeige in der linken Abbildung zu erhalten, sind Fehlermeldungen per
error_reporting(E_ERROR | E_PARSE) auf schwerwiegende Fehler reduziert.

 Die Variablen $bestellnummer und $bearbeiter werden mit einem Wert belegt.

 Der Wert des superglobalen Arrays $_POST["sorte"]wird außerhalb der Funktion
bestellung()ausgegeben.

 Die Funktion bestellung() wird aufgerufen. Da Funktionsblöcke erst durchlaufen
werden, wenn die Funktion aus dem Skript aufgerufen wird, werden die Anweisungen
innerhalb der Funktion erst ausgeführt, wenn bestellung() aufgerufen wurde.

 Die Variable $bestellnummer wird innerhalb der Funktion bestellung()

mithilfe des Schlüsselwortes global bekannt gemacht.

 +  Die Variablen $bestellnummer und $bearbeiter sollen innerhalb der Funktion
ausgegeben werden. Da die Variable $bearbeiter innerhalb der Funktion nicht mit‐

hilfe des Schlüsselwortes global bekannt gemacht wurde, wird sie bei der Ausgabe
nicht angezeigt . Sie gilt als nicht definiert.

 Der Wert des superglobalen Arrays $_POST["menge"] wird innerhalb der Funktion
bestellung()ausgegeben.

 Innerhalb der Funktion bestellung()wird der Wert der lokalen Variablen $preis
per switch‐Anweisung in Abhängigkeit von der Apfelsorte berechnet.

 Die lokale Variable $preis wird innerhalb der Funktion ausgegeben.

 Die lokale Variable $preis  soll auch außerhalb der Funktion ausgegeben werden.
Dies funktioniert allerdings nicht, da es sich um eine lokale Variable handelt, die inner‐
halb dieser Funktion definiert wurde, aber nicht mit dem Schlüsselwort global
bekannt gemacht wurde.












Lizenziert für ComCave College GmbH

 8 Funktionen

 126 © HERDT‐Verlag

8.4 PHP‐Dateien einbinden mit include()und
require()

Bislang wurde in allen Übungen mit einer einzelnen PHP‐Datei gearbeitet. Wie Sie gelesen haben,
optimieren Funktionen den Quelltext dadurch, dass wiederkehrende Aufgaben in Funktionen
gekapselt werden und von beliebigen Stellen im Skript aufgerufen werden können. Ein weiterer
Schritt, PHP‐Code zu verbessern, ist, Funktionen in separate Dateien auszulagern, damit diese
nicht nur in einer Datei, sondern von beliebig vielen Dateien verwendet werden können.

Um ausgelagerte Funktionen verwenden zu können, muss die Datei mit den darin enthaltenen

Funktionen mit der eigentlichen Skript‐Datei verknüpft werden. Mithilfe der include()‐ bzw.
require()‐Anweisung können Sie ausgelagerte PHP‐Abschnitte, wie z. B. eigene PHP‐
Funktionen, in Ihr PHP‐Programm einbinden.

Mit include() und require() arbeiten

Die include()‐ bzw. require()‐Anweisung bindet eine Datei, deren Name (einschließlich
relativer oder absoluter Pfadangabe) als Argument übergeben wird, in den aktuellen
Programmcode ein.

Unterschiede zwischen include() und require()
Beide Anweisungen funktionieren ähnlich. Ein wichtiger Unterschied zwischen den beiden
Anweisungen zeigt sich, wenn eine Datei fehlerhaft eingebunden wurde:

 Falls die angegebene Datei nicht vorhanden ist, führt include() zu einer Warnung. Das
Skript wird aber weiter ausgeführt. Sollte in der eingebundenen Datei kein PHP‐Code sein,
der für die weitere Abarbeitung des Haupt‐Skripts notwendig ist, kann dieses auch mit
einem fehlerhaften include() bis zum Ende laufen.

 Der Befehl require() beendet bei einer fehlenden Datei das Skript sofort mit einer
Fehlermeldung.

Syntax und Bedeutung der include()‐ und require()‐
Anweisungen

 Die include()‐ und require()‐Befehle
erwarten als Parameter die einzubindende Datei.
Befindet sich die Datei nicht im selben Ordner,
muss der Pfad angegeben werden.

 Der Aufruf erfordert nicht zwingend die runden
Klammern. Dateiname und Pfad können auch in
Anführungszeichen hinter dem Schlüsselwort

include bzw. require angegeben werden.

include("Dateiname");
require("Dateiname");

include
("Pfad/Dateiname");
require
("Pfad/Dateiname");

include "Dateiname";
require "Dateiname";

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 127

 Beinhaltet die eingebundene Datei keinen PHP‐Code, wird der Inhalt unverändert an den
Browser weitergegeben und somit am Bildschirm dargestellt.

 Auch Ausgaben per echo oder print_r in einer eingebundenen Datei werden, soweit
keine anderen Maßnahmen ergriffen wurden, direkt im Browser ausgegeben.

 Eingebundene Dateien, die per return einen Rückgabewert liefern, können wie Funktio‐
nen mit Rückgabewert behandelt werden. Entweder wird der Rückgabewert direkt per

echo include("Dateiname") ausgegeben oder er wird in einer Variablen
gespeichert: $variable = include("Dateiname") und kann dann per echo
$variable ausgegeben werden.

 Jede Funktionsdefinition in eingebundenen Dateien steht in der aufrufenden Datei zur Ver‐
fügung. Die Vorstellung, die eingebundene Datei wird in die aufrufende Datei an die Stelle
des Aufrufs „hineinkopiert“, erleichtert das Verständnis der Funktionsweise.

Wenn include() oder require() ausgeführt werden, wird die Abarbeitung des Haupt‐
Skripts so lange unterbrochen, bis die fremde Datei geladen und verarbeitet wurde. Aus
diesem Grund muss die eingebundene Datei vollständig gültiger PHP‐Code sein. Ein

Leerzeichen oder HTML‐Elemente vor dem öffnenden <?php oder hinter dem schließenden

PHP‐Tag ?> führt oftmals zum Fehler. Als gängige Konvention hat sich deswegen etabliert,

das schließende ?> einfach wegzulassen. Damit vermeiden Sie eventuelle Leerzeichen am
Ende der PHP‐Datei.

Skripte, die in einen PHP‐Code eingebunden werden sollen, können mit der Dateierweiterung .inc
abgespeichert werden. Je nach Serverkonfiguration wird bei .inc‐Dateien der PHP‐Code jedoch
nicht geparst, sondern der Inhalt direkt im Browser ausgegeben, wenn die Datei direkt im Browser
aufgerufen wird, was je nach Inhalt eine Sicherheitslücke darstellen kann. Erst wenn eine .inc‐Datei
in PHP eingebunden ist, wird sie regulär wie PHP geparst.

Alternativ bietet sich die Dateiendung .inc.php an. Daran können Sie erkennen, dass eine solche
Datei zur Einbindung vorgesehen ist, sie wird aber beim direkten Aufruf im Browser geparst. Eine
ungewollte Ausgabe des PHP‐Codes im Browser wird so vermieden.

Nur einmal laden: include_once() und require_once()

Die Funktionen include_once() und require_once() entsprechen im Wesentlichen den

Funktionen include() und require(). PHP prüft allerdings, ob die angegebene Datei
bereits eingebunden wurde. Ist das korrekt, wird die Datei nicht nochmals eingebunden.

Durch den Einsatz dieser Funktionen können Sie Fehler vermeiden, die z. B. durch Mehrfach‐
deklaration namengleicher Funktionen oder nochmalige Wertzuweisungen von Variablen
hervorgerufen werden.

Datei mit require() einbinden

Sie erstellen eine selbst definierte Funktion summe() in einer separaten Datei. Außer der
Funktion enthält diese Datei keinen weiteren PHP‐Code. Die Datei wird dann von einer zweiten

Datei über die require()‐Anweisung eingebunden, sodass auch dort die Funktion
summe()zur Verfügung steht.

Lizenziert für ComCave College GmbH

 8 Funktionen

 128 © HERDT‐Verlag

Beispiel: require.php

 <h1>require: Verwenden einer Funktion aus einer anderen Datei</h1>
<?php
 echo "<p>Ein fremdes PHP-Skript wird eingebunden und die dort
 enthaltene Funktion ausgeführt:</p>";

 require ("eigene_funktion.inc.php");
 summe(2000, 1376);
 echo "<hr><p>Hier kann das Skript weitere Anweisungen
 enthalten.</p>";
?>

 Die require()‐Anweisung bindet die Datei eigene_funktion.inc.php ein.

Datei: eigene_funktion.inc.php

<?php
function summe($zahl1, $zahl2) {
 $ergebnis = $zahl1 + $zahl2;
 echo "<p>Summenbildung: $zahl1 + $zahl2 = " . $ergebnis . "</p>";
}

Innerhalb der Datei eigene_funktion.inc.php wurde die Funktion summe() definiert, die nach
dem Einbinden in der aufrufenden Datei zur Verfügung steht.

Damit die Funktion summe() in der ausgelagerten Datei zur Verfügung steht, muss die Datei

vor dem Funktionsaufruf eingebunden werden. Wird require() erst hinter dem Funktions‐
aufruf verwendet, kennt PHP den ausgelagerten Code noch nicht und es kommt zum Fehler.

Anzeige der Beispieldatei „require.php“

Das Einbinden von Dateien per include bzw. require ist nicht auf PHP‐Dateien beschränkt.
Sie können z. B. auch *.txt oder *.html‐Dateien einbinden. In den Beispiel‐Dateien finden Sie die
Datei include.php, welche die Datei einfueg.txt einbindet. Das Prinzip und die Syntax ist die
gleiche wie bei der Einbindung von PHP‐Dateien. Allerdings wird Text bzw. HTML lediglich
ausgegeben und nicht von PHP geparst.

Lizenziert für ComCave College GmbH

Funktionen 8

 © HERDT‐Verlag 129

8.5 Übungen

Übung 1: Mit Funktionen arbeiten

Level

Zeit ca. 10 min

Übungsinhalte  PHP‐Funktionen

 Optionale Parameter

Übungsdatei ‐‐

Ergebnisdatei funktion_uebung.php

1. Erstellen Sie eine PHP‐Datei funktion_uebung.php,

in der Sie zwei Funktionen definieren: addiere()
und multipliziere(). Beide Funktionen sollen
Berechnungen gemäß ihren Namen durchführen:
Zahlen addieren bzw. multiplizieren.

2. In den Funktionsaufrufen sollen zwei Parameter
eingegeben werden müssen, ein definierter dritter
Parameter ist optional. (Überlegen Sie, welche
Standardwerte Sie für den dritten Parameter ver‐
geben müssen, damit die Funktionen richtige
Berechnungen durchführen.) Eine Ausgabe des
Ergebnisses soll zusammen mit einem kurzen Text,
welche Berechnung mit welchen Zahlen vorge‐
nommen wurde, direkt in den Funktionen erfolgen.

3. Erweitern Sie Ihr Programm um vier Funktionsaufrufe:

Funktionsaufrufe 1 und 2: addiere(), multipliziere()
mit jeweils drei Parametern: 8, 4 und 2.

Funktionsaufrufe 3 und 4: addiere(), multipliziere()
mit jeweils zwei Parametern: 8 und 4.

 Anzeige der Beispiellösung
„funktion_uebung.php“

Lizenziert für ComCave College GmbH

 8 Funktionen

 130 © HERDT‐Verlag

Übung 2: Funktionen über ein Formular aufrufen

Level

Zeit ca. 10 min

Übungsinhalte  HTML‐Formular

 PHP‐Funktionen

 Einbinden von Dateien per include()

 Verwenden der globalen Variable $_POST

Übungsdatei ‐‐

Ergebnisdateien funktion.inc.php, form_uebung.php

1. Kopieren Sie die Funktionsdefinition

addiere()und speichern Sie diese in eine
andere Datei mit dem Namen
funktion.inc.php.

2. Erstellen Sie ein Formular mit dem
Dateinamen form_uebung.php mit
Eingabefeldern für drei Zahlen und
Schaltflächen zum Absenden und
Zurücksetzen des Formulars.

3. Die Datei soll sich beim Absenden des Formu‐
lars selbst aufrufen. Die Funktion
addiere() soll in die Datei
form_uebung.php eingebunden und von hier
aus aufgerufen werden, nachdem das
Formular versendet wurde.

Anzeige der Beispiellösung „form_uebung.php“

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 131

9
9. Mit Daten aus externen Dateien arbeiten

Beispieldateien: Dateien aus Ordner Kap09

9.1 Externe Dateien nutzen

Beispiel für die Nutzung von Daten aus externen Dateien

Wenn Sie Daten, welche die Benutzer in ein Formular eingegeben haben, z. B. in einer Excel‐
Tabelle auswerten oder bearbeiten möchten, können Sie diese außerhalb des PHP‐Skripts in
einer externen Datei speichern. Über PHP haben Sie die Möglichkeit, externe Dateien zu öffnen,
Inhalte auszulesen, aber auch Inhalte in Dateien zu schreiben oder zu ersetzen.

Beispiele für die sinnvolle Nutzung von externen Dateien sind:

 Protokolldateien schreiben:

Sie können Daten in einer eigenen Datei speichern, um z. B. die Anzahl der Aufrufe einer
Webseite zu protokollieren.

 Dynamische Daten in eine Webseite einbauen:
Sie können beispielsweise einen Hinweis auf das Angebot des Tages in einer externen
Textdatei speichern. So brauchen Sie, um die Daten zu verändern, nur die externe Datei
zu bearbeiten.

 Sie können Eingaben aus Formularen speichern, falls Sie keine Datenbank einsetzen können
bzw. wollen.

Wichtig bei der Bearbeitung von externen Dateien ist die Art der Datei. PHP kann zwischen dem
Zugriff auf Textdateien und binäre Dateien unterscheiden. Textdateien (*.txt) oder Textdateien
im Tabellenformat (*.csv) beinhalten Zeilen unterschiedlicher Länge. Sie werden sowohl beim
Schreiben als auch beim Lesen zeilenweise bearbeitet. Im Rahmen der PHP‐Grundlagen erlernen
Sie in diesem Kapitel das Arbeiten mit Textdateien.

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 132 © HERDT‐Verlag

9.2 Dateien öffnen, lesen und schließen

Der Zugriff auf externe Dateien besteht immer aus den gleichen Schritten:

 Datei öffnen

 Datei bearbeiten, also Inhalte auslesen oder Inhalte in die Datei schreiben

 Datei schließen

PHP bietet zu diesem Zweck unterschiedliche Funktionen an, welche entweder einen einzelnen
dieser Schritte abarbeiten oder alle drei Schritte in einem bewerkstelligen.

Dateien mit fopen()öffnen
Bevor Sie auf die Inhalte in Dateien zugreifen können, müssen Sie die entsprechende Datei

öffnen. Dazu können Sie die Funktion fopen()verwenden.

Syntax und Bedeutung der Funktion fopen()

fopen("Pfad/Dateiname", "Modus");
$handle = fopen("user.txt","r")

fopen()stellt einen Stream (Datenstrom, sozusagen eine Verbindung) zu der angegebenen

Datei  her. Der Rückgabewert von fopen()ist ein sogenannter Handle (engl: Griff oder
Henkel) und hat den Datentyp resource. Diesen Handle benötigen Sie, um weitere Aktionen mit

der Datei durchzuführen. Dieser Rückgabewert wird in der Variablen $handle  gespeichert.
Über den Handle steuern Sie auch den Dateizeiger. Dieser bestimmt die Position in der Datei, von
der aus Sie Daten lesen oder schreiben.

Voraussetzung für einen erfolgreichen Dateizugriff ist der korrekte Pfad zu der Datei sowie

passende Zugriffsrechte auf die Datei. Scheitert das Öffnen der Datei, liefert fopen()den Wert

FALSE zurück.

Modus zum Öffnen von Dateien

Als zweiten Parameter erwartet fopen() einen Modus , zu welchem Zweck die Datei geöff‐
net werden soll, z. B. lesen oder schreiben. Darüber hinaus steuern Sie über den Modus den
Dateizeiger bzw. an welcher Stelle in der Datei dieser steht. Fehlt dieser Modus‐„Schalter“, liefert

fopen()FALSE zurück, der Aufbau des Streams ist dann fehlgeschlagen. PHP gibt eine Fehler‐
meldung vom Typ warning aus.

In PHP stehen folgende Modi für fopen()zur Verfügung:

'r' Die Datei wird nur zum Lesen (r = read) geöffnet, der Dateizeiger wird auf den Anfang der
Datei positioniert.

'r+' Die Datei wird zum Lesen und Schreiben geöffnet, der Dateizeiger wird auf den Anfang der
Datei gesetzt.

 

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 133

'w' Öffnet eine Datei nur zum Schreiben (w = write). Der Dateizeiger wird auf den Anfang der
Datei gesetzt und die Länge der Datei auf 0 Byte. Eventuell vorhandene Daten werden
gelöscht. Existiert die Datei nicht, wird sie angelegt.

'w+' Hier handelt es sich um dieselbe Option wie die Option 'w', nur wird hier die Datei zum
Lesen und Schreiben geöffnet.

'a' Die Datei wird nur zum Schreiben geöffnet, der Dateizeiger wird auf das Ende der Datei
gesetzt. Neue Daten ergänzen vorhandene Daten (a = append).

'a+' Wie Option 'a', jedoch wird die Datei zum Lesen und Schreiben geöffnet.

'x' Erzeugt und öffnet eine Datei zum Schreiben und setzt den Dateizeiger auf den Datei‐

anfang. Falls die Datei bereits vorhanden ist, liefert fopen () FALSE zurück.
'x+' Erzeugt und öffnet eine Datei zum Lesen und Schreiben, sonst wie 'x'.
'c' Öffnet eine Datei zum Schreiben, falls die Datei nicht existiert, wird sie erzeugt. Wenn die

Datei existiert, wird sie im Gegensatz zu 'w' nicht gekürzt, vorhandene Daten bleiben
erhalten. Der Dateizeiger wird auf den Dateianfang gesetzt.

'c+' Öffnet die Datei zum Lesen und Schreiben, ansonsten wie 'c'.

Prüfung auf Existenz einer Datei mit file_exists()
Bevor Sie eine Datei öffnen, sollten Sie stets prüfen, ob die Datei überhaupt vorhanden ist. Ein Lese‐

Zugriff per fopen() sollte erst gar nicht durchgeführt werden, wenn die Datei nicht vorhanden ist.
Bei einem beabsichtigten Schreib‐Zugriff sollte dann ein Modus gewählt werden, der das Anlegen

der Datei automatisch durchführt. Zu diesem Zweck steht Ihnen file_exists() zur Verfügung.

Syntax und Bedeutung der Funktion file_exists()

Die Funktion liefert im Erfolgsfall TRUE zurück. Dabei unterschei‐
det file_exists() nicht nach Dateien oder Verzeichnissen.

Auf Datei mit is_file()prüfen

Noch differenzierter prüfen Sie die zu öffnende Datei mit is_file(), ob es sich überhaupt um

eine Datei handelt. Mit file_exists() können Sie schlimmstenfalls doch in einen Fehler
laufen, wenn Sie ein gleichlautendes Verzeichnis finden und versuchen, dieses als Datei zu
öffnen. Grundsätzlich sollten Sie so konkret wie möglich prüfen, um Fehler gezielt abfangen zu
können. Damit verbessern Sie die Qualität Ihres Skriptes.

Syntax und Bedeutung der Funktion is_file()

Handelt es sich bei dem angegebenen Namen um eine Datei, liefert die

Funktion TRUE zurück, anderenfalls FALSE.

Eine vergleichbare Funktion in PHP ist is_dir() zur Prüfung auf Verzeichnisse.

file_exists(Name);

is_file(Name);

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 134 © HERDT‐Verlag

Dateien mit fgets()lesen

Mit der Funktion fgets()können Sie eine Zeile einer Datei auslesen. Sie wird von der Position
des Dateizeigers aus gelesen, welche Sie zuvor über den Modus bei fopen() bestimmt haben.

Syntax und Bedeutung der Funktion fgets()

 Als ersten Parameter erwartet fgets() den
Handle, der beim Öffnen der Datei per

fopen() zurückgeliefert wurde. Im Beispiel

wurde der Handle in der Variablen $handle 
gespeichert.

 fgets() liest eine Zeile aus einer Datei aus: eine Zeile entspricht den Daten einer Zeile bis
zum ersten Zeilenumbruch \n.

 Geben Sie den Parameter Länge an, wird die Zeile nur bis zu der angegebenen Länge
gelesen.

 fgets() liest keine weiteren Daten ein, wenn das Ende der Datei (EOF = End of File)
erreicht ist.

 Jeder Aufruf von fgets() bewegt den Dateizeiger eine Zeile weiter, bis das Ende der Datei
erreicht ist. Wenn Sie fgets()erneut aufrufen, wird die nächste Zeile gelesen. Sollen
Dateien komplett ausgelesen werden, wird dies in der Regel über eine while()‐Schleife
realisiert.

 Der Rückgabewert der Funktion fgets() ist eine Zeichenkette. Im Beispiel wird der Rück‐

gabewert in der Variablen $zeile gespeichert.

Steuerungszeichen für das Zeilenende

Die zeilenweise Abarbeitung von fgets() basiert darauf, dass das Ende einer Zeile auch
erkannt wird. PHP erkennt das Zeilenende an dem Steuerungszeichen \n, welches auch beim
Schreiben zum Erzeugen eines Zeilenumbruchs verwendet wird.

Allerdings haben die verschiedenen Betriebssysteme unterschiedliche Konventionen für das

Zeilenende. Unix‐basierte Systeme verwenden das einfache \n, Windows die Kombination von

\r\n (r für return, n für new line), Macintosh‐Systeme verwenden nur das \r. Gerade beim
Schreiben von Dateien können Ergebnisdateien auf den jeweils anderen Systemen fehlerhaft
dargestellt werden, wenn nicht das korrekte Zeichen eingesetzt wird.

Prüfung auf Dateiende mit feof()
Beim Auslesen von Dateiinhalten über eine while()‐Schleife benötigen Sie für den Schleifen‐
kopf eine Bedingung, wann die Schleife beendet werden soll. Dies wird in der Regel durch die

Funktion feof() realisiert.

fgets(Handle[, Länge]);
$zeile = fgets($handle);



Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 135

Syntax und Bedeutung der Funktion feof()

Mit der Funktion feof() und dem Handle, welchen Sie von

fopen() erhalten haben, überprüfen Sie, ob der Dateizeiger am
Ende der Datei steht.

feof()liefert TRUE zurück, wenn der Dateizeiger am Ende der Datei steht, anderenfalls FALSE.
Dies wird als Bedingung für die while()‐Schleife verwendet: while (!feof($handle)).
Das bedeutet, solange feof()FALSE zurück gibt, wird die Schleife fortgeführt und die Datei
weiter gelesen. Erst wenn feof()TRUE liefert, und damit die Bedingung im Schleifenkopf falsch

wird – durch die umgekehrte Abfrage durch das !: !feof()– wird die Schleife beendet.

Dateien mit fclose() schließen
Nachdem Sie eine Datei geöffnet und die Daten ausgelesen haben, sollten Sie die Datei wieder
schließen, um sie für andere Prozesse nutzbar zu machen. PHP schließt die Verbindung zur Datei
mit Ende des PHP‐Skriptes zwar automatisch, allerdings gehört es zum guten Programmierstil,
geöffnete Dateien wieder regulär zu schließen, um Ressourcen zu sparen und etwaige Fehler‐
quellen zu reduzieren.

Syntax und Bedeutung der fclose()‐Anweisung

 Mit der Funktion fclose() schließen Sie den geöffneten
Datei‐Stream. fclose()erwartet den Datei‐Handle, der
zuvor über fopen() geliefert wurde.

 Wurde die Datei erfolgreich geschlossen, gibt die Funktion fclose() den Wert TRUE
zurück, ansonsten FALSE.

Beispiel zu externe Datei öffnen, lesen und schließen: fgets.php

 <?php

 if (is_file("protokoll.txt")) {

 $handle = fopen("protokoll.txt", "r");

 if ($handle != FALSE) {

 while (!feof($handle)) { // Schleife bis zum Dateiende

 $zeile = fgets($handle); // liest aktuelle Zeile

 echo $zeile . "
";

 }

 fclose($handle);

 } else {

 echo "<p>Beim Öffnen der Datei trat ein Fehler auf.</p>";
 }

 } else {

 echo "<p>Der angegebene Name ist keine Datei.</p>";

 }

 ?>

feof(Handle);

fclose(Handle);
fclose($handle);

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 136 © HERDT‐Verlag

 Es wird geprüft, ob der angegebene Name protokoll.txt eine Datei ist. Bei erfolgreicher
Prüfung wird der Anweisungsblock zum Öffnen der Datei durchlaufen, ansonsten eine

Fehlermeldung im else‐Zweig ausgeben.

 Die Datei protokoll.txt wird zum Lesen geöffnet. fopen() gibt den Handle zurück, dieser
wird in der resource‐Variablen $handle gespeichert.

 In der if‐Anweisung wird geprüft, ob die Datei geöffnet werden konnte. Falls ja, wird der
if‐Zweig ausgeführt, anderenfalls der else‐Zweig.

 Um den kompletten Inhalt der Datei
auszulesen, wird eine while‐Schleife
verwendet, die so lange durchlaufen
wird, bis das Ende der auszulesenden
Datei erreicht ist. Ob der Dateizeiger am
Ende der Datei steht, prüfen Sie mit der

Funktion feof(). Solange das Ende der
Datei nicht erreicht ist, gibt feof()
FALSE zurück, die while‐Schleife wird
weiter ausgeführt. Am Ende der Datei

gibt feof() TRUE zurück, damit wird

die while‐Schleife dann beendet.

 Die aktuelle Zeile wird ausgelesen und in der Variablen $zeile gespeichert. Da
fgets()zum Auslesen der Zeile verwendet wird, wird der Dateizeiger automatisch auf die
nächste Zeile gesetzt, die dann im nächsten Durchlauf der Schleife ausgelesen wird.

 Die Variable $zeile wird per echo ausgegeben.

 Die Datei protokoll.txt wird nach der while‐Schleife geschlossen.

9.3 Weitere Möglichkeiten zum Lesen von Dateien

Dateien mit readfile() oder file()lesen
Während die Funktion fgets()den Inhalt einer Datei zeilenweise ausliest, können Sie mit den

Befehlen readfile() und file()den gesamten Inhalt einer Datei auf einmal auslesen.

Der Unterschied zwischen den beiden Funktionen readfile() und file() liegt in der
Ausgabe der Daten:

 readfile() liest den Inhalt der Datei vollständig aus und
sendet das Ergebnis ohne weitere Bearbeitung und Weiter‐
verarbeitungsmöglichkeit direkt an den Browser.
Zeilenumbrüche werden nicht dargestellt, wenn sie nicht als HTML‐Tags in der eingelesenen
Datei vorhanden sind.

 file()liest den vollständigen Inhalt der Datei in ein Array ein. Hierbei wird jeweils eine
Zeile zu einem Eintrag im Array.

Anzeige der Beispieldatei „fgets.php"

readfile("Datei");
file("Datei");

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 137

Beispiel readfile.php und file.php

<?php
 readfile("protokoll.txt");
?>

<?php
 $feld = file("protokoll.txt");
 echo "<p>";
 $i = 1;
 foreach ($feld as $zeile) {
 echo "Zeile " . $i++ . ": ";
 echo $zeile . "
";
 }
 echo "</p>";
?>

Beispieldatei „readfile.php“ Beispieldatei „file.php“

Dateien mit file_get_contents() lesen

Die Funktion file_get_contents() ist die
empfohlene Methode, Inhalte einer Datei einzulesen.

Dabei werden die Inhalte anders als bei readfile() in einem String gespeichert. Eine Weiter‐

verarbeitung ist so problemlos möglich. Vergleichbar zu file()ist nur ein Aufruf notwendig. Das
Öffnen und Schließen der Datei wird dabei automatisch von der Funktion übernommen.

Ausgelesene Inhalte verarbeiten

Beim Einlesen von Dateien besteht
häufig das Problem, dass in der Datei
vorhandene Zeilenumbrüche zwar
erkannt werden, bei der Ausgabe im
Browser aber nicht als Zeilenwechsel
dargestellt werden.

PHP bietet für diese Zwecke die Funktion nl2br() (gesprochen: „new line to break“, also
„Wandle Zeilenumbrüche in
‐Tags um“). Die Funktion erfüllt genau diese Aufgabe,
sie erkennt Zeilenwechsel in externen Dateien und wandelt diese in HTML‐Tags für einen Zeilen‐
umbruch
 um.

Der zweite Parameter ist optional. Wird dieser nicht angegeben, werden XHTML‐konforme

‐Tags ausgegeben; der Standardwert für den zweiten Parameter ist TRUE. Möchten Sie

einfache
‐Tags erhalten, müssen Sie hier FALSE angeben.

file_get_contents("Datei");

nl2br("Zeichenkette [, true/false]");

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 138 © HERDT‐Verlag

Beispiel: file_get_contents.php

 <?php

 $inhalt = file_get_contents("protokoll.txt");

 echo nl2br($inhalt, FALSE); // nl2br: Zeilenumbrüche erkennen und
 // in
-Befehle umwandeln
?>

 Über die Funktion

file_get_contents() wird der
Inhalt der Datei protokoll.txt in einen
String eingelesen und unter dem
Variablennamen $inhalt
gespeichert. Da HTML5 das Tag

in seiner alten Schreibweise zulässt,
wird hier der zweite Parameter auf

FALSE gesetzt.

 Die Variable $inhalt wird auf dem
Bildschirm ausgegeben. Die Funktion

nl2br() wird verwendet, um Zeilen‐
umbrüche, die in der eingelesenen

Datei vorhanden sind, in
‐Tags
umzuwandeln und so auch Zeilen‐
umbrüche in der Ausgabe darzustellen.

Daten in anderen Verzeichnissen auslesen

In den bisherigen Beispielen lagen die eingelesen Textdateien immer im gleichen Verzeichnis wie
die PHP‐Datei. In der Praxis ist dies jedoch selten der Fall. Statt dem Dateinamen können Sie auch
Pfadangaben in den vorgestellten Funktionen verwenden, entweder relativ, z. B.

fopen("../files/protokoll.txt", "r",) oder absolut. Ein Beispiel für einen
absoluten Pfad sehen Sie in folgendem Beispiel.

Beispiel: pfad.php

 <?php

 $datei = "protokoll.txt";

 $pfad = "C:\\xampp\\htdocs\\herdt\\";

 $inhalt = file_get_contents($pfad . $datei);

 echo "<pre>";
 print_r($inhalt);
 echo "</pre>";

 ?>

 Anzeige der Beispieldatei
„file_get_contents.php“

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 139

 Der Dateiname wird hier in

einer Variablen $datei
gespeichert.

 Der Pfad wird ebenfalls in einer

Variablen $pfad gespeichert.
Zu beobachten ist, dass hier
doppelte Backslashs im
Dateipfad verwendet werden.
Dies ist für Pfade unter Windows notwendig, da der Backslash J in PHP eine Escape‐Sequenz
und den nachfolgenden Buchstaben ausblenden würde. Das bedeutet, der jeweils erste J
escaped den folgenden J, damit dieser von PHP auch erkannt wird. Unter Linux wird in
Pfadangaben der normale Schrägstrich H verwendet, die Problematik stellt sich dort nicht.

 Die Inhalte werden über file_get_contents() eingelesen. Die Variablen $pfad und
$datei werden über den Punkt . konkateniert und der Funktion übergeben.

 Hier wird der Inhalt über echo und print_r‐Anweisungen ausgegeben. Das HTML‐Tag

<pre> sorgt dafür, dass die Zeilenumbrüche aus der Textdatei so angezeigt werden, wie sie
dort vorkommen.

9.4 In Dateien schreiben

Dateien zum Schreiben öffnen

Wollen Sie Daten in eine Datei schreiben, müssen Sie die Datei zuerst öffnen. Beim Öffnen der
Datei können Sie bestimmen, ob Sie die bestehenden Daten der Datei überschreiben wollen oder
der bestehenden Datei weitere Daten hinzufügen möchten.

Dateien überschreiben

Wenn Sie eine Datei mit der Funktion fopen() und dem Modus 'w' für write öffnen, wird die
Datei zum Schreiben geöffnet und der Dateizeiger auf den Anfang der Datei verschoben. Gleich‐
zeitig wird die Länge der Datei auf 0 Byte gesetzt. Das bedeutet, dass vorhandene Inhalte
gelöscht werden. Wenn die Datei nicht existiert, wird sie angelegt.

Daten in Dateien hinzufügen

Um Daten fortlaufend in eine Datei zu schreiben, verwenden Sie den Befehl fopen() mit dem

Modus 'a'. Die Datei wird zum Schreiben geöffnet und der Dateizeiger an das Ende der Datei
gesetzt, sodass die neuen Daten hinzugefügt werden. Existiert sie nicht, legt PHP die Datei an.

Daten in Dateien schreiben

Um eine Zeichenkette in eine geöffnete Datei zu schreiben, verwenden Sie die Funktion

fwrite().

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 140 © HERDT‐Verlag

Syntax und Bedeutung der Funktion fwrite()

fwrite(Handle, Zeichenkette[, Länge]);

 Mit der Funktion fwrite() können Sie eine beliebige Zeichenkette in eine Datei schreiben.

 Die entsprechende Datei wird über den von fopen() zurückgegebenen Handle
angesprochen.

 Ist der optionale Parameter Länge angegeben, wird das Schreiben nach der angegebenen
Anzahl Bytes beendet. Geben Sie ihn nicht an, wird die gesamte Zeichenkette geschrieben.

 fwrite() gibt bei Erfolg die Anzahl der geschriebenen Bytes zurück, andernfalls FALSE.

Nachdem Daten in die Datei geschrieben wurden, sollte die Datei geschlossen werden, damit sie
für andere Zugriffe nicht gesperrt ist.

Beispiel: bestellung.php

Die Daten, die der Benutzer in ein Bestellformular für
Äpfel (Datei bestellformular.html) eingibt, sollen in eine
*.csv‐Datei (bestellung_daten.csv) geschrieben werden.
Existiert die *.csv‐Datei noch nicht, wird sie angelegt,
anderenfalls werden die Daten an das Ende der Datei
geschrieben.

 <?php

 $handle = fopen("bestellung_daten.csv", "a");

 if ($handle == FALSE) {
 echo "<p>Datei konnte nicht zum Schreiben geöffnet werden</p>";

 die("<p>Das Programm wird beendet.</p>");
 }

 $name = $_POST["name"];
 $strasse = $_POST["strasse"];
 $ort = $_POST["ort"];
 $sorte = $_POST["sorte"];
 $menge = $_POST["menge"];

 if (fwrite($handle,

 utf8_decode("$name;$strasse;$ort;$sorte;$menge;\n"))) {
 echo "<p>Folgende Angaben wurden gespeichert</p>";
 echo "<p>$name
$strasse
$ort
$menge kg $sorte</p>";
 } else {
 echo "<p>Das Schreiben der Daten ist fehlgeschlagen.</p>";
 }

 fclose($handle);
?>

Anzeige nach Absendung des Formulars
„bestellformular.html“

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 141

 Die Datei bestellung_daten.csv wird mit fopen() im Modus 'a' geöffnet, d. h. zum
Schreiben und Anhängen neuer Daten. Der Dateizeiger wird an das Ende der Datei gesetzt,
sodass die neuen Daten hinzugefügt werden.

 Es wird geprüft, ob das Öffnen der Datei erfolgreich war.

 Wenn die Datei nicht erfolgreich geöffnet werden kann, z. B. weil Sie nicht über die nötigen

Berechtigungen verfügen, wird mit die() das Programm sofort beendet. Die Funktion

die() kann auch ohne Parameter aufgerufen werden. Wollen Sie eine Meldung über das

Beenden des Skripts ausgeben, können Sie die() mit einer Zeichenkette aufrufen, welche
vor dem Beenden des Skripts ausgegeben wird. Diese Zeichenkette kann auch HTML‐Tags
enthalten.

  Die Variablen $name, $strasse, $ort, $sorte und $menge werden mit den über‐
gebenen Formulardaten gefüllt.

 Über die Funktion fwrite() werden die Werte der Variablen in die geöffnete Datei
geschrieben. Hierbei werden die Daten jeweils durch ein Semikolon voneinander getrennt.
Dieses wird in CSV‐Dateien als Trennungszeichen der einzelnen Einträge verwendet. Am
Ende einer Zeile wird mit einem "\n" ein Zeilenumbruch erzeugt. Im Erfolgs‐ bzw. im
Fehlerfall wird eine entsprechende Meldung ausgegeben.

 Zusätzlich sehen Sie, dass die Zeichenkette von der Funktion utf8_decode()umschlossen

ist. Um für Windows eine Datei mit dem ISO-8859-1‐Zeichensatz zu erstellen, müssen

UTF-8‐Zeichen konvertiert werden.
 Die geöffnete Datei wird geschlossen.

*.csv‐Dateien können Sie mit einem Programm wie z. B. LibreOffice – Calc oder Microsoft Excel
öffnen und bearbeiten.

Ansicht der Datei „bestellung_daten.csv“ in Microsoft Excel

Daten mit der Funktion file_put_contents() schreiben

file_put_contents() ist eine Funktion, die das Schreiben einer Zeichenkette in eine Datei
vereinfacht. Die Funktion fasst die bei fwrite() notwendigen Schritte fopen(),
fwrite()und fclose() zusammen. PHP kümmert sich selbst um das Öffnen und Schließen
der Datei.

Syntax und Bedeutung der Funktion file_put_contents()

file_put_contents(Dateiname, Zeichenkette[, Flag]);

 Die Funktion entspricht fopen(), fwrite() und fclose().

 Geben Sie den optionalen Parameter Flag nicht an, werden eventuell vorhandene Daten
überschrieben. Durch Angabe von FILE_APPEND wird eine Zeichenkette bei Aufruf der
Funktion am Ende der Datei angefügt.

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 142 © HERDT‐Verlag

Beispiel: file_put_contents.php

 <?php

 $file = "text.txt";

 if (file_put_contents($file, "Zeichenkette Aufruf 1\r\n")) {
 echo "<p>Funktionsaufruf 1: erfolgreich.</p>";
 }

 if (file_put_contents($file, "Zeichenkette Aufruf 2\r\n",
 FILE_APPEND)) {
 echo "<p>Funktionsaufruf 2: erfolgreich.</p>";
 }
?>

 Der Name der Datei, in die geschrieben werden

soll, wird festgelegt und der Variablen $file
zugewiesen.

 file_put_contents() wird aufgerufen, die
Datei text.txt wird angelegt und die angegebene
Beispiel‐Zeichenkette in die Datei geschrieben.
Auch hier ist die Voraussetzung, dass Sie
Schreibrechte auf das Verzeichnis haben, in dem
die Datei angelegt werden soll.

 Liefert die Funktion bei erfolgreichem Schreiben TRUE zurück, wird auf dem Bildschirm eine
Meldung ausgegeben. Damit auch der Windows‐Editor die Datei richtig anzeigen kann, wird

in diesem Beispiel die Windows‐Variante des Zeilenumbruchs "\r\n" verwendet.

 Beim nochmaligen Aufruf der Funktion file_put_contents() wird das optionale Flag
FILE_APPEND angegeben. Dies bewirkt, dass die Zeichenkette der bestehenden Datei
angefügt wird. Vorhandene Inhalte werden nicht überschrieben.

9.5 Weitere Datei‐Funktionen

Dateien per flock()sperren

Syntax und Bedeutung der Funktion flock()

 flock() sperrt den Zugriff auf die Datei, auf die der
Handle verweist. Der Modus ermöglicht verschiedene
Sperrzustände der Datei.

 Darf während Ihres Zugriffs die Datei von anderen nur gelesen werden, setzen Sie den

Modus auf LOCK_SH (Shared Lock, Lesezugriff).

 Soll kein anderer Nutzer zeitgleich die Datei nutzen dürfen, setzen Sie die Option LOCK_EX
(Exclusive Lock). flock() wartet, bis die Datei wie angegeben benutzt werden kann.
Geben Sie zusätzlich zum LOCK_EX den Schalter LOCK_NB an (Syntax: flock($fp,
LOCK_EX | LOCK_NB)), gibt die Funktion den Wert FALSE zurück, wenn die Datei
bereits von einem anderen Programm gesperrt ist.

 Möchten Sie die Verriegelung wieder freigeben, rufen Sie flock() erneut mit dem

Schalter LOCK_UN (Unlock) auf.

Anzeige der geschriebenen Datei
„text.txt“

flock(Handle, Modus);

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 143

 Die Funktion liefert bei Erfolg den Wert TRUE zurück bzw. FALSE, wenn ein Fehler auftritt.

 Die Sperre wird automatisch über die Funktion fclose()am Ende des PHP‐Skripts aufge‐
hoben, falls Sie diese nicht selber aufgehoben haben.

Bei manchen Betriebssystemen ist die Funktion flock() auf Prozess‐Ebene (Teil einer
Applikation) implementiert. Hierbei können Sie sich nicht auf flock() verlassen, um
Dateien vor dem Zugriff von anderen PHP‐Skripten zu schützen.

Zudem wird flock()nicht von allen Dateisystemen unterstützt. In solchen Umgebungen erhalten

Sie ein FALSE zurück, wenn Sie flock()verwenden.

Position des Dateizeigers mit fseek()setzen

Syntax und Bedeutung der Funktion fseek()

In manchen Fällen ist es notwendig, den Dateizeiger innerhalb der Datei neu zu positionieren.

Wie oben beschrieben bewegt fgets()den Dateizeiger nach dem Lesen eine Zeile weiter.
Möchten Sie nach einer Leseaktion eine Schreibaktion durchführen und den zuvor ausgelesenen
Inhalt überschreiben, müssen Sie zunächst den Dateizeiger an die richtige Stelle bewegen.

 Als ersten Parameter verwenden Sie den

Handle, welchen Sie zuvor beim Öffnen der
Datei erhalten haben.

 Für den Parameter Stelle geben Sie die Anzahl in Bytes, bezogen auf den Dateianfang, der
durch den Dateizeiger festgelegt wird, an.

 Der optionale Parameter Wie legt bestimmte Bezugspunkte für die Ermittlung der Position

fest: Der Parameter SEEK_CUR ermöglicht die Verschiebung auf die aktuelle Position des

Dateizeigers plus Stelle, SEEK_END vom Dateiende und SEEK_SET vom Dateianfang.

 Fehlt der Parameter Wie, ist standardmäßig die Option SEEK_SET gewählt.

9.6 Zugriffszähler für eine Webseite

Ein einfaches Beispiel in Verbindung mit Dateizugriffen ist die Einbettung eines Counters (Zugriffs‐
zählers) in eine Webseite. Ein Counter zählt die Anzahl der Webseiten‐Zugriffe. Dabei wird bei je‐
dem Zugriff der Wert des Zählers um eins erhöht. Das heißt, es wird auf eine bestehende Datei zu‐

gegriffen, der Inhalt, also die Zahl wird ausgelesen und um den Wert 1 erhöht. Das Ergebnis der
Berechnung überschreibt dann den Inhalt der Datei.

fseek(Handle, Stelle [, Wie]);

Lizenziert für ComCave College GmbH

 9 Mit Daten aus externen Dateien arbeiten

 144 © HERDT‐Verlag

Beispiel: counter.php

<p>Der Stand des Zählers ist: <?php counter() ?></p>
<?php

 function counter() {

 $name = "counter.txt";

 $handle = fopen($name, "r+");
 if ($handle) {

 flock($handle, LOCK_EX);

 $count = fgets($handle, 10);

 fseek($handle, 0);
 // Zähler erhöhen und ausgeben

 echo "" . ++$count . "";

 fwrite($handle, $count);

 fclose($handle);
 }
 }
?>

 Im HTML‐Text wird die Funktion counter() zur Anzeige der Besucherzahl aufgerufen.

 Die Funktion counter() wird definiert.

 Der Name der Datei, in der die Anzahl der Besucher abgelegt werden soll, lautet counter.txt

und wird der Variablen $name zugewiesen.

 Die Datei counter.txt wird über die Funktion fopen() zum Lesen und Schreiben geöffnet.

Der Zugriff auf diese Datei erfolgt über die Handle‐Variable $handle. Durch Verwendung
des Modus r+ wird der Dateizeiger an den Anfang der Datei gesetzt.

 Damit während der Arbeit mit der Datei kein weiterer Zugriff und somit kein gleichzeitiges
Überschreiben der Daten möglich ist, wird die Datei für andere Zugriffe (LOCK_EX)
gesperrt.

 Mit fgets() werden die ersten 10 Zeichen der Datei ausgelesen. Der Wert 10 wurde
gewählt, da hiermit die Verarbeitung einer Zahl mit 10 Stellen (bis 9999999999) gewähr‐
leistet ist.

 Damit der neue Wert den alten Wert in der
Datei überschreiben kann, wird der Datei‐

zeiger mittels fseek() und der Angabe 0 an
den Anfang der Datei gesetzt.

 Der Wert wird um eins erhöht und am
Bildschirm fett formatiert ausgegeben.

 Über die Funktion fwrite() wird der neue
Wert der Variablen $count in die Datei
geschrieben.

 fclose() schließt die Datei counter.txt und
beendet zugleich die Zugriffssperre, die über

flock() gesetzt wurde.

Ausgabe der Beispieldatei „counter.php“

Lizenziert für ComCave College GmbH

Mit Daten aus externen Dateien arbeiten 9

 © HERDT‐Verlag 145

9.7 Übung

Umfrage mit Gewinnspiel

Level

Zeit ca. 20 min

Übungsinhalte  HTML‐Formulare

 Dateien öffnen

 Daten in Dateien schreiben

 Dateien schließen

Übungsdatei ‐‐

Ergebnisdateien formular_umfrage.htm, umfrage.php, umfrage_daten.csv

1. Sie möchten eine Umfrage durchführen. Hierfür erstellen Sie ein Formular, in das Daten ein‐

gegeben werden. Um die Daten auswerten zu können, schreiben Sie ein PHP‐Skript, das die
Eingaben in einer CSV‐Tabelle speichert.

1. Das Umfrageformular speichern Sie unter dem Namen formular_umfrage.html, das aus‐
wertende PHP‐Skript unter dem Namen umfrage.php und die übergebenen Daten werden in
der Datei umfrage_daten.csv gespeichert.

Formular „formular_umfrage.html“

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 146 © HERDT‐Verlag

10
10. Zeichenketten‐Funktionen

Beispieldateien: Dateien aus Ordner Kap10

10.1 Zeichenketten ausgeben

Daten liegen abhängig von ihrer Herkunft häufig als Rohdaten vor, haben keine besondere Forma‐
tierung und sind für die Ausgabe nicht immer geeignet. PHP bietet vielfältige Funktionen an, mit
denen Sie Daten in eine bestimmte optische Form bringen können, die entweder besser lesbar ist
oder bestimmten Konventionen (beispielsweise für die Darstellung von Fließkommazahlen, einer
Telefonnummer oder eines Datums) der Sprache entsprechen.

Zeichenketten mit der Funktion printf()formatieren

Wenn Sie Daten für die Ausgabe im Browser formatieren möchten, verwenden Sie die Funktion

printf(). Die Funktion gibt das formatierte Ergebnis direkt im Browser aus, es wird keine

echo‐Anweisung benötigt.

printf (print formatted = formatierte Ausgabe) ermöglicht Ihnen, durch die Angabe spezieller
Optionen festzulegen, wie eine Zahl oder eine Zeichenkette ausgegeben werden soll. Ein Beispiel
ist die Ausgabe von Fließkommazahlen. Bei Berechnungen erhalten Sie als Rückgabe mitunter
eine Fließkommazahl mit mehreren Nachkommastellen. Sie möchten beispielsweise nur eine
oder zwei Stellen nach dem Komma am Bildschirm ausgeben, z. B. 10.5 km oder 19.50 €.

Syntax der Funktion printf()

printf(Formatierung[, Argument1[, Argument2, ...]]);

 Der Parameter Formatierung ist eine Zeichenkette, worin Anweisungen für eine forma‐

tierte Ausgabe enthalten sind.

 Die Formatierung kann keine, eine oder mehrere Anweisungen beinhalten.

 Jede Formatierungsanweisung besteht aus einem Prozentzeichen K gefolgt von einem oder
mehreren Elementen, die eine bestimmte Formatierung festlegen. Die Typangabe in der
Formatierung ist notwendig, ohne diese erfolgt eine nicht korrekte Ausgabe.

 Jede einzelne Formatierungsanweisung in der Zeichenkette Formatierung, die mit dem K eingeleitet wird, wird von links nach rechts mit den einzelnen Parametern verarbeitet
und dann an die definierte Stelle in die Zeichenkette eingesetzt.

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 147

 Innerhalb der Formatierung können auch einzelne Zeichen eingesetzt werden, die bei der
Ausgabe mit auf dem Bildschirm erscheinen sollen, z. B. Leerzeichen, Buchstaben bzw.
Zahlen oder Sonderzeichen wie beispielsweise ***.

Formatierungen angeben

Typangabe

Hiermit legen Sie fest, welchen Datentyp das auszugebende Argument haben soll. In dieser
Übersicht finden Sie die geläufigsten Optionen, eine Übersicht aller „Schalter“ finden Sie unter
http://php.net/sprintf.

Option Erläuterung

b Die Zeichenkette wird als Ganzzahl angesehen und soll in binärer (binary)
Schreibweise ausgegeben werden.

c Eine Ganzzahl soll als ASCII‐Code dargestellt werden, z. B. 65 ergibt A.

d Eine Ganzzahl erhält führende Füllzeichen, z. B. Nullen: 3:14 Uhr ergibt 03:14 Uhr.

f Der Parameter soll als Fließkommazahl dargestellt werden.

s Das Argument wird als Zeichenkette (string) angesehen und als solche ausgegeben.

x Die Ganzzahl wird in hexadezimaler Form dargestellt. Hexadezimale Ziffern werden

als Zahlen von 0 bis 9 und als Kleinbuchstaben a, b, c, d, e, f dargestellt.

Die Typangabe bestimmt den Datentyp, welchen PHP darstellt. Hier greift die automatische
Datentypkonvertierung von PHP. Deutlich wird dies in folgendem Code‐Beispiel.

Beispiel: typ_angabe.php

 <?php

 printf("<p>Ausgabe Typ b: %b</p>", "Hallo");

 printf("<p>Ausgabe Typ c: %c</p>", "Hallo");

 printf("<p>Ausgabe Typ d: %d</p>", "Hallo");

 printf("<p>Ausgabe Typ f: %f</p>", "Hallo");

 printf("<p>Ausgabe Typ s: %s</p>", "Hallo");

 printf("<p>Ausgabe Typ x: %x</p>", "Hallo");
 echo "<hr>";

 $ascii = 83;

 printf("<p>Typ c von $ascii: %c</p>", $ascii);

 $string1 = "Hallo";

 $string2 = "Welt";

 printf("<p>Zwei Parameter: <i>%s</i> %s</p>",
 $string1, $string2);

 ?>

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 148 © HERDT‐Verlag

 Hier wird die Option b angegeben. printf()
wandelt die übergebene Zeichenkette in eine Zahl
um und gibt den binären Wert aus.

 Über die Option c soll der ASCII Code ausgegeben
werden. Da „Hallo“ eine Zeichenkette ist, kommt

es zu keiner Ausgabe, der Typ c benötigt einen
integer‐Wert.

 Über d wird hier der String in einen integer
konvertiert, der Wert von „Hallo“ ist 0.

 Hier entsprechend die Konvertierung des Strings in

ein float bei der Option f.

 Die Option s ist passend für die Zeichenkette, hier
wird „Hallo“ korrekt ausgegeben.

 Auch bei der Option x wandelt PHP den String in
einen integer um, die Ausgabe ist hier ebenfalls 0.

 Hier wird das ASCII‐Zeichen von der zuvor
definierten Variable ausgegeben. Hier funktioniert

die Option c korrekt. Wie Sie in diesem Beispiel
sehen, können die Parameter direkt der Funktion
übergeben werden, oder eben über Variablen.

 In dieser Zeile wird die Option s für string angegeben und es werden zwei Parameter
angegeben. Jedes vorkommende K‐Zeichen in der Formatierungsanweisung wird von links
nach rechts mit den übergebenen Parametern ersetzt.

Füllzeichen und Ausrichtung der Füllzeichen

Über printf() können Sie eine Zeichenkette auf eine bestimmte Länge mit beliebigen Zeichen
auffüllen. Dabei wird ein String, der kürzer als die Anzahl der angegebenen Zeichen ist, mit dem
Füllzeichen aufgefüllt, längere Strings werden nicht ergänzt, aber auch nicht gekürzt. Zusätzlich
können Sie festlegen, ob die Zeichen am Anfang oder am Ende der Zeichenkette aufgefüllt
werden sollen.

Wie in folgendem Beispiel zu sehen, kann das nützlich sein, wenn Sie Buchungsnummern immer
mit einer bestimmten Länge ausgeben möchten.

Beispiel: fuellzeichen.php

 <?php

 printf("<p>8 Zeichen aufgefüllt: %'*8s</p>",
 "Hallo");

 $buchungsnummern = [1528, 879124, "AB7896"];
 echo "";

 foreach ($buchungsnummern as $eine_nummer) {

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 149

 printf("Buchungsnummer: %012s", $eine_nummer);

 }

 echo "";

 echo "";

 foreach ($buchungsnummern as $eine_nummer) {

 printf("Buchungsnummer: %-012s", $eine_nummer);

 }

 echo "";

 ?>

 Hier wird die Zeichenkette auf eine Länge von

8 Zeichen aufgefüllt. Falls Sie einen Buchstaben
oder ein anderes Zeichen übergeben, müssen
Sie diesen ein Hochkommata 7 voranstellen.
Zahlen geben Sie ohne 7 an.

 Es wird über die Kurzschreibweise ein Array mit
verschiedenen Buchungsnummern unter‐
schiedlicher Länge definiert.

 Das Array wird über eine foreach()‐Schleife
durchlaufen.

 Die jeweilige Nummer wird als HTML‐

Listeneintrag ausgegeben. printf() füllt die
Nummern mit 12 Nullen auf. Per Standard
werden die Zeichen links, also vor der
Zeichenkette aufgefüllt. Beachten Sie:

 Die erste 0 hinter dem K‐Zeichen definiert das eigentliche Füllzeichen, die Anzahl der
aufzufüllenden Stellen folgt dahinter und kann ein oder mehrstellig sein.

 In einer weiteren Schleife wird das definierte Array wiederholt durchlaufen. Hier steht vor
dem Füllzeichen 0 das Minus‐Zeichen -. Dieser „Schalter“ bewirkt, dass die Zeichen nicht
vorne, sondern am Ende der Zeichenkette aufgefüllt werden.

Nachkommastellen

printf() bietet ebenfalls die Möglichkeit, die Menge der Nachkommastellen festzulegen.

Diese Möglichkeit steht Ihnen in Kombination mit der Option f für einen Float‐Wert zur
Verfügung. Dabei wird der Punkt . angegeben, daran erkennt PHP, dass hier die Formatierung
der Nachkommastellen durchgeführt werden soll. Über die Zahl hinter dem . wird die Länge der
Nachkommastellen definiert. Sowohl . als auch die Längenangabe muss vor dem Options‐

buchstaben f stehen, ansonsten ist die Ausgabe fehlerhaft. Ganze Zahlen werden mit so vielen 0
als Nachkommastellen dargestellt, wie angegeben ist.

Die Darstellung der Nachkommastellen und das Auffüllen von Zeichen kann miteinander
kombiniert werden. Die Menge der Nachkommastellen wird hinter dem Punkt . angegeben, die
Länge, auf die der übergebene Parameter aufgefüllt werden soll, vor dem Punkt. Dort wird
sowohl das Füllzeichen als auch die Länge an sich definiert. Dabei ist zu beachten, dass das
Dezimalzeichen und die Nachkommastellen mitgezählt werden für die Länge, auf welche die
gesamte Ausgabe aufgefüllt werden soll.

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 150 © HERDT‐Verlag

Beispiel: nachkommastellen.php

 <?php

 $zahl1 = 157.549862;
 $zahl2 = 300;

 printf("<p>2 Stellen: %.2f</p>", $zahl1);

 printf("<p>4 Stellen: %.4f</p>", $zahl1);

 printf("<p>Ganzzahl: %.2f</p>", $zahl2);

 printf("<p>6 Zeichen: %06.2f</p>", $zahl1);

 printf("<p>10 Zeichen: %010.2f</p>", $zahl1);

 printf("<p>10 Zeichen: %'X10.2f</p>", $zahl1);
?>

 Zuerst werden zwei Variablen definiert, die

erste mit einem float‐Wert, die zweite als
Ganzzahl.

 Mit der Angabe von .2 legen Sie fest, dass 2
Nachkommastellen dargestellt werden sollen.

Beachten Sie, dass printf() hier den float‐
Wert aufrundet.

 Hier wird der float mit 4 Zeichen hinter dem
Komma definiert.

 Der Integer wird hier als float dargestellt, die
Nachkommastellen sind 0.

 Hier soll zusätzlich die gesamte Ausgabe auf 6
Zeichen aufgefüllt werden. Da die Ausgabe
bereits 6 Zeichen hat und da der Dezimalpunkt
sowie die Nachkommastellen mit gezählt
werden, findet kein weiteres Auffüllen statt.

 In dieser Zeile wird der float auf insgesamt 10 Stellen aufgefüllt

 Hier wird die Darstellung ebenfalls bis auf 10 Zeichen erweitert, in dem Fall mit dem

Buchstaben X, den Sie mit einem Hochkommata U maskieren müssen.

10.2 Zahlen formatieren

Zahlen mit der Funktion number_format() formatieren

Float‐Werte werden in PHP in der englischen Notation mit dem Punkt . verwendet. Um die
Darstellung von Floats an die deutsche Notation anzupassen, steht Ihnen die Funktion
number_format() zur Verfügung. Neben dem Zeichen, das als Dezimalzeichen angezeigt
werden soll, kann ebenfalls das Tausendertrennzeichen definiert werden.

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 151

Syntax der Funktion number_format()

number_format(Zahl, Stellen, "Nachkomma", "Tausender");

 Der Parameter Zahl gibt die Zahl an, die formatiert werden soll.

 Mit dem Parameter Stellen geben Sie die Anzahl der Nachkommastellen an. Auf die Zahl
der Nachkommastellen wird gerundet.

 Nachkomma erwartet die Angabe des Dezimaltrennzeichens für die Nachkommastellen.

 Der Parameter Tausender legt das Tausendertrennzeichen fest.

Die Funktion number_format()erwartet entweder zwei oder vier Parameter. Falls Sie ein
Zeichen als Dezimaltrennzeichen angeben, müssen Sie auch immer ein Zeichen für das
Tausendertrennzeichen hinterlegen.

Beispiel: number_format.php

<?php

 $zahl = 23456789.7583;
 echo "<p>Vorher: $zahl</p>";
 echo "<p>Nachher: " .

 number_format($zahl, 2, ",", ".") . "</p>";
?>

Ausgabe der Beispieldatei „number_format.php“

10.3 Nach Zeichenketten suchen

Nach einer Zeichenkette (String) suchen

Mit den Funktionen strstr() und stristr() können Sie nach dem ersten Vorkommen eines
bestimmten Strings in einer Zeichenkette suchen. Zurückgeliefert werden die Zeichen ab
Vorkommen des Strings bis zum Ende des Suchstrings.

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 152 © HERDT‐Verlag

Syntax und Bedeutung der Funktion strstr()

 Der erste Parameter

String gibt die
Zeichenkette an, die
durchsucht werden soll.

 Die Zeichenkette, nach der gesucht werden soll, wird im zweiten Parameter Suchstring
übergeben.

 Falls der Suchstring nicht im String gefunden wird, liefert die Funktion FALSE zurück.

 Ist die Suche erfolgreich, liefert die Funktion standardmäßig als Rückgabewert eine Zeichen‐
kette vom Vorkommen des Suchstrings bis zum Ende des Strings, in dem gesucht wird.

 Wird der dritte, optionale Parameter TRUE angegeben, wird die Zeichenkette vor dem
ersten Auftreten des gesuchten Suchstrings zurückgegeben.

 Die Funktion strstr() berücksichtigt die Groß‐ und Kleinschreibung der Zeichen.

 Die Funktion stristr() sucht entsprechend der Funktion strstr(), ignoriert jedoch
die Groß‐ und Kleinschreibung der Zeichenketten.

 Die Funktion kann direkt mit Zeichenketten: z. B. strstr("MarioC@herdtex.de",
"C@") oder auch mit Variablen aufgerufen werden.

In der Dokumentation auf http://php.net werden als Beispielvariablen $haystack und $needle
(Heuhaufen und Nadel) verwendet. Daran ist schnell zu erkennen, welcher der Suchstring ist und
worin gesucht wird. Hilfreich ist das auch deswegen, da in unterschiedlichen Suchfunktionen die
Reihenfolge der Parameter nicht einheitlich ist. Manchmal ist der „Heuhaufen“ der erste Para‐
meter, mitunter aber auch der zweite oder dritte.

Beispiel: strstr.php

 <?php

 $string = "MarioC@herdtex.de";

 $teil_gross = "C@";
 $teil_klein = "c@";
 echo "<p>Vorgabe ist der String: $string</p>";

 echo "<p>strstr():
Suche nach $teil_gross ergibt: " .
 strstr($string, $teil_gross);

 echo "
Suche nach $teil_klein ergibt: " .
 strstr($string, $teil_klein) . "</p>";

 echo "<p>stristr():
Suche nach $teil_klein ergibt: " .
 stristr($string, $teil_klein) . "</p>";
?>

strstr (String, Suchstring [, true/false]);
stristr(String, Suchstring [, true/false]);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 153

 Die Variable $string erhält die
Zeichenkette, die durchsucht werden
soll („Heuhaufen“).

 Die zu suchenden Zeichen werden in

der Variablen $teil_gross und
$teil_klein angegeben („Nadel“).

 Mit der Funktion strstr() werden
die Zeichen der Variablen
$teil_gross innerhalb der
Variablen $string gesucht.
Zurückgegeben werden die Zeichen ab
dem gefundenen Suchstring, also
C@herdtex.de.

 Die gleichen Zeichen werden in
Kleinbuchstaben gesucht. Es erfolgt
keine Ausgabe, da die gesuchte
Zeichenfolge nicht gefunden wird, weil

strstr() (ohne das i) die Groß‐ und
Kleinschreibung berücksichtigt.

 Mit der Funktion stristr() können Sie unabhängig von der Groß‐ und Kleinschreibung
nach einer Zeichenkette suchen. Analog zu  wird mit der Funktion stristr()die
Zeichenkette durchsucht, in diesem Fall auch gefunden und das Ergebnis angezeigt.

Nach einem Zeichen suchen

Syntax und Bedeutung der strrchr()‐Anweisung

Die strrchr()‐Anweisung findet das letzte Vorkommen eines Zeichens in einer Zeichenkette
und liefert die restliche Zeichenkette ab dem gefundenen Zeichen bis zum Ende des Strings
zurück.

 Im ersten Parameter String wird die Zeichen‐
kette übergeben, die durchsucht werden soll. Der
zweite Parameter Zeichen enthält das zu

 suchende Zeichen.

 Die Funktion strrchr()beginnt, den String von hinten zu durchsuchen, und findet somit
das letzte Vorkommen des gesuchten Zeichens.

 Die Funktion strrchr()liefert als Rückgabewert einen String, falls das Zeichen gefunden
wird, sonst FALSE.

 Beachten Sie: Auch wenn nach nur einem Zeichen gesucht wird, ist der Rückgabewert bei
Sucherfolg meistens eine Zeichenkette.

 Groß‐ und Kleinschreibung ist zu beachten.

Das r zwischen str und chr in strrchr()steht für reverse. Die Suche erfolgt rückwärts, beginnt
somit am Ende des Strings. Die Funktion strchr()ohne r zwischen str und chr durchsucht den
String von vorne. Das erste Vorkommen eines Zeichens wird ermittelt. Mit einiger Erfahrung
können Sie aus der Funktionsbezeichnung die Funktionalität der jeweiligen Funktion ableiten.

Anzeige der Beispieldatei „strstr.php“

strrchr(String, Zeichen);

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 154 © HERDT‐Verlag

Beispiel: strrchr.php

<?php
 $string = "MarioC@herdtex.de";
 echo "<p>Vorgabe ist der String: $string</p>";
 $teil_1 = "r";
 $teil_2 = "R";
 echo "<p>strrchr():
Suche nach $teil_1 ergibt: " .
 strrchr($string,
 $teil_1);
 echo "
Suche nach $teil_2 ergibt: " . strrchr($string,
 $teil_2) . "</p>";
?>

Anzeige der Beispieldatei „strrchr.php“

10.4 Position und Teil einer Zeichenkette ermitteln

Position eines Zeichens ermitteln

Um die erste bzw. letzte Position eines Zeichens in einer Zeichenkette zu bestimmen, verwenden

Sie die Funktionen strpos() und strrpos().

Syntax und Bedeutung der Funktion strpos()

 Innerhalb der Klammern werden der

String sowie das zu suchende
Zeichen angegeben.

 Optional können Sie den Parameter Start angeben. Hiermit beginnt die Suche nach dem

Zeichen nicht am Anfang des Strings, sondern erst an der Stelle Start.

 Die Funktion strpos() gibt die erste Stelle an, an der das gesuchte Zeichen gefunden
wurde.

 Liefert die Funktion den Wert 0 zurück, handelt es sich um das erste Zeichen im String. Wird

der Wert FALSE zurückgeliefert, befindet sich das Zeichen nicht im angegebenen String.

strpos(String, Zeichen, [Start]);
strrpos(String, Zeichen, [Start]);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 155

 Im Unterschied zur Funktion strpos() liefert die Funktion strrpos()die letzte Position
des Zeichens zurück, da mit der Suche von rechts, also vom Ende des Strings begonnen wird.

Teilstring einer Zeichenkette bestimmen

Mit der Funktion substr()können Sie einen Teil einer Zeichenkette extrahieren.

Syntax und Bedeutung der substr()‐Anweisung

 Geben Sie im Parameter String die aus‐
zulesende Zeichenkette und im Parameter

Start die Startposition an, an der das
Auslesen der Zeichen (von links) begonnen
werden soll.

Wenn Sie einen negativen Wert für den Parameter Start angeben, dann beginnt das
Auslesen der Zeichen von rechts, also vom Ende der Zeichenkette.

 Optional können Sie den Parameter Länge angeben. Geben Sie keine Länge an, werden die
Zeichen vom Startpunkt bis zum Ende des Strings zurückgeliefert.

Beispiel: strpos.php

Aus einer E‐Mail‐Adresse soll die dazugehörige Domain ermittelt werden. Dazu suchen Sie in der
E‐Mail‐Adresse nach dem Zeichen L und übergeben die nachfolgenden Zeichen an eine neue
Variable. Dieser Zeichenkette werden die Zeichen http://www. vorangestellt, um die Web‐
Adresse zu generieren.

 <?php

 $string = "webmaster@php.net";
 $zeichen = "@";

 echo 'E-Mail-Adresse: ' . $string;

 $pos = strpos($string, $zeichen);

 if ($pos === FALSE) {
 echo "<p>Zeichen $zeichen konnte nicht
 gefunden werden!</p>";

 } else {
 echo "<p>Wert von \$pos: $pos (Position des
 $zeichen-Zeichen)</p>";

 $webadresse = substr($string, $pos + 1);

 $webadresse = "http://www." . $webadresse;

 echo "<p>Web-Adresse:
 $webadresse</p>";
 }
?>

 Der Variablen $string wird die E‐Mail‐Adresse webmaster@php.net übergeben. Das
Zeichen L, nach dem gesucht werden soll, wird der Variablen $zeichen zugewiesen.

substr(String, Start [, Länge]);

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 156 © HERDT‐Verlag

 Die E‐Mail‐Adresse wird zur Kontrolle am
Bildschirm ausgegeben.

 Über die Funktion strpos() wird die
Position gesucht, an der sich das Zeichen L befindet. Dieser Wert wird in der
Variablen $pos gespeichert.

 In der if‐Anweisung wird abgefragt, ob
das Zeichen L gefunden wurde. Durch
den Identisch‐Operator 9 9 9 wird
geprüft, ob der Wert der Variablen $pos
gleich FALSE ist und beide identische
Datentypen aufweisen. Dies ist zur

Abgrenzung vom Wert 0 (Fund an der
ersten Stelle im String) nötig, da 0 und
FALSE zwar als gleiche Werte verstanden
werden, jedoch aufgrund ihrer unter‐
schiedlichen Datentypen nicht identisch
sind. Ein Vergleich von 0 und FALSE mit 9 9 wäre richtig, obwohl die Funktion
keine Position ermitteln konnte.

 Der else‐Zweig wird ausgeführt, falls das Zeichen L gefunden wurde.

 Mit der Funktion substr() wird die Zeichenfolge nach dem Zeichen L in der Variablen

$webadresse gespeichert. Somit haben Sie den Namen der Domain aus der E‐Mail‐
Adresse extrahiert.

 Der Domain wird die Zeichenkette http://www. vorangestellt.

 Der HTML‐Code zum Anzeigen eines Hyperlinks wird erstellt und über den Befehl echo am
Bildschirm ausgegeben.

10.5 Zählen innerhalb von Zeichenketten

Länge von Zeichenketten bestimmen

Über strlen()bestimmen Sie die Länge der angegebenen Zeichenkette, z. B. zur Prüfung,
ob eine Mindestlänge für ein Eingabefeld in ein Formular eingehalten wurde.

Syntax und Bedeutung der strlen()‐Anweisung

 Innerhalb der Klammern wird der String angegeben, dessen
Zeichenlänge ermittelt werden soll.

 Als Ergebnis erhalten Sie die Anzahl der Zeichen bzw. 0, wenn die Zeichenkette leer ist.

Anzahl des Vorkommens bestimmen

Mit der Funktion substr_count()ermitteln Sie, wie oft ein Suchstring in einer Zeichenkette
(String) vorkommt.

Anzeige Beispieldatei „strpos.php“

strlen(String);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 157

Syntax und Bedeutung der substr_count()‐Anweisung

 Im Parameter String wird die Zeichen‐
kette übergeben, innerhalb derer nach
der Häufigkeit des Suchstrings durch‐
sucht werden soll.

 Im Parameter Suchstring wird die Zeichenkette angegeben, von der Sie das Vorkommen

im String zählen möchten.

 Als Rückgabewert erhalten Sie die Anzahl, wie oft der Suchstring im String gefunden
wurde.

 Sich überlappende Suchstrings werden nicht mitgezählt, so wird z. B. der Suchstring ABCABC
nur einmal in der Zeichenkette ABCABCABC gezählt.

Beispiel: substr_count.php

In diesem Beispiel soll kontrolliert werden, ob eine Zeichenkette mindestens einmal das Zeichen L und mindestens einmal den Punkt . enthält.

 <?php

 $string = "webmaster@herdtex.de";

 $okay = TRUE;
 echo "E-Mail-Adresse: " . $string;

 if (substr_count($string, "@") == 0) {
 echo "<p>Zeichen @ konnte nicht gefunden
 werden!</p>";
 $okay = FALSE;
 }

 if (substr_count($string, ".") == 0) {
 echo "<p>Zeichen . konnte nicht gefunden
 werden!</p>";
 $okay = FALSE;
 }

 if ($okay == TRUE) {
 echo "<p>Die E-Mail-Adresse scheint gültig zu sein.</p>";
 }
?>

 Die Variable $string beinhaltet die zu

untersuchende E‐Mail‐Adresse. Sie können
sie zum Testen der Abfragen beliebig ändern.

 Die Variable $okay wird angelegt, um das
Testergebnis zu speichern. Zu Beginn wird sie

standardmäßig auf den Wert 1 gesetzt,
wobei 1 für gültig und 0 für ungültig steht.

 Im if‐Zweig wird über die Funktion
substr_count() überprüft, ob sich im

Wert der Variablen $string das Zeichen L befindet. Ist der Rückgabewert 0, wurde
das Zeichen nicht gefunden, so wird eine
entsprechende Meldung ausgegeben. Der

Wert der Variable $okay wird auf 0 gesetzt.

substr_count(String, Suchstring);

Anzeige Beispieldatei „substr_count.php“

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 158 © HERDT‐Verlag

 In der zweiten if‐Anweisung wird nach dem Zeichen . gesucht. Wird dieses nicht
gefunden, wird analog zu dem vorhergehenden Zweig eine Meldung ausgegeben und der

Wert der Variable $okay auf 0 gesetzt.

 Die letzte Bedingung prüft, ob die Variable $okay den Wert 1 hat und somit die E‐Mail‐
Adresse die Zeichen L und . enthält. Im Browser wird eine Erfolgsmeldung ausgegeben.

Diese Überprüfung einer E‐Mail‐Adresse dient lediglich zur Verdeutlichung der Funktion

substr_count(). Die Kriterien für eine gültige E‐Mail‐Adresse sind weitaus umfang‐
reicher. Für den Einsatz in der Praxis ist dies kein ausreichender Ansatz.

10.6 Zeichenketten vergleichen

Zeichenketten miteinander vergleichen

Mithilfe der Funktionen strcmp()bzw. strcasecmp() können Sie zwei Zeichenketten
miteinander vergleichen.

Syntax und Bedeutung der strcmp()‐Anweisung

 Die Funktion vergleicht die einzelnen Zeichen

von String1 und String2 anhand ihres
ASCII‐Codes. Beispielsweise ist das Zeichen a
(ASCII‐Code: 65) kleiner als das Zeichen b
(ASCII‐Code: 66).

 Die zwei Zeichenketten, die binär miteinander verglichen werden sollen, werden innerhalb
der Klammern angegeben.

 Bei dem Vergleich wird nach Groß‐ und Kleinschreibung unterschieden.

 Als Rückgabe erhalten Sie einen Wert < 0, wenn String1 < String2 ist, oder einen
Wert > 0, wenn String1 > String2 ist, oder den Wert 0, wenn beide Zeichenketten
gleich sind.

 Die Funktion strcasecmp() lässt im Unterschied zur Funktion strcmp() die Groß‐ und
Kleinschreibung außer Acht.

10.7 Zeichenketten modifizieren

Mit folgenden Funktionen können Sie Zeichenketten unterschiedlich umwandeln, wie z. B. eine
Zeichenkette wiederholen, Leerzeichen aus einer Zeichenkette entfernen oder Zeichenketten in
Groß‐ bzw. Kleinschreibung umändern.

strcmp(String1, String2);
strcasecmp(String1, String2);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 159

Zeichenketten wiederholen

Syntax und Bedeutung der str_repeat()‐Anweisung

 Der angegebene String wird mehrmals
aneinandergesetzt.

 Wie oft die Zeichenkette wiederholt werden soll, geben Sie über den Parameter Anzahl an.

Beispiel: Eine mehrfache Ausgabe am Bildschirm erreichen Sie beispielsweise über die
Angabe von echo str_repeat('-', 80);

Leerraum oder andere Zeichen entfernen

Syntax und Bedeutung der Anweisungen

 Alle Funktionen entfernen beliebige Zeichen, die

als optionaler Parameter Zeichenliste
angegeben werden müssen. Wird der Parameter
nicht angegeben, werden automatisch die
sogenannten Leerräume entfernt.

Das sind u. a. das Leerzeichen, die Steuerungszeichen (Escape‐Sequenzen) "\n" für Zeilen‐
umbruch oder "\t" für Tabulator.

 Die Funktion rtrim()löscht angegebene Zeichen oder Leerräume am Ende (r vor dem trim
steht für right) eines Strings.

 ltrim() hat dieselbe Funktion, entfernt diese Zeichen aber am Anfang einer Zeichenkette
(das l steht hier für left).

 Die Funktion trim() entfernt angegebene Zeichen bzw. die Leerräume am Anfang und
Ende einer Zeichenkette.

Buchstaben innerhalb einer Zeichenkette umwandeln

Syntax und Bedeutung der Anweisungen

 Die Funktion strtolower()wandelt alle Zeichen der
Zeichenkette in Kleinbuchstaben um.

 Die Funktion strtoupper() wandelt alle Zeichen der
Zeichenkette in Großbuchstaben um.

 Mit der Funktion ucfirst() setzen Sie den ersten Buchstaben der Zeichenkette in einen
Großbuchstaben um, sofern es sich hierbei um ein Zeichen des Alphabets handelt (uc am
Anfang des Funktionsnamens steht hier für UpperCase).

 Die Funktion ucwords() setzt den ersten Buchstaben eines jeden Wortes in einen Groß‐
buchstaben um. Auch hierbei muss es sich jeweils um ein alphabetisches Zeichen handeln.

Beispiel: str_umwandeln.php

 <?php

 $text = "im 3. Quartal des Jahres stieg der Umsatz um 20%";
 echo "<p>Original: $text</p>";

str_repeat(String, Anzahl);

rtrim(String[, Zeichenliste]);
ltrim(String[, Zeichenliste]);
trim (String[, Zeichenliste]);

strtolower(String);
strtoupper(String);
ucfirst(String);
ucwords(String);

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 160 © HERDT‐Verlag

 $kl = strtolower($text);
 echo "<p><code>strtolower()</code>: $kl</p>";

 $gr = strtoupper($text);
 echo "<p><code>strtoupper()</code>: $gr</p>";

 $uf = ucfirst($text);
 echo "<p><code>ucfirst()</code>: $uf</p>";

 $uw = ucwords($text);
 echo "<p><code>ucwords()</code>: $uw</p>";
?>

Der Variablen $text wird eine
Zeichenkette zugewiesen, die über
die verschiedenen Funktionen
modifiziert werden soll.

 Der Beispieltext wird mit der

Funktion strtolower() in
Kleinbuchstaben umgewandelt.

 Der Beispieltext wird mit der

Funktion strtoupper() in
Großbuchstaben umgewandelt.

 Das erste Zeichen des übergebenen
Wertes, also hier des ganzen Satzes,
und damit nur das des ersten Wortes
des Beispieltextes, wird mit der

Funktion ucfirst() in einen
Großbuchstaben umgewandelt.

 Das erste Zeichen jedes Wortes des Beispieltextes wird mit der Funktion ucwords() in
einen Großbuchstaben umgewandelt.

Zeichen oder Zeichenfolgen innerhalb einer Zeichenkette austauschen

Manchmal ist es notwendig, spezielle Zeichen oder Zeichenfolgen auszutauschen, z. B. bei un‐
erwünschten Sonderzeichen oder um Zeichenfolgen eine spezielle Formatierung zuzuweisen.

Syntax und Bedeutung der Funktion strtr()

 Die strtr()-Funktion bearbeitet den String, indem Zeichen aus Zeichen_von in die
entsprechenden Zeichen aus Zeichen_nach umgesetzt werden. Als Ergebnis erhalten Sie
die umgewandelte Zeichenkette.

 Die Zeichen, die ausgetauscht werden sollen, geben Sie bei der strtr()-Funktion in
Anführungszeichen hintereinander an (z. B. strtr("Buch", "u", "a");).

 Es wird jedes einzelne Zeichen in Zeichen_von durch das Zeichen an entsprechender
Stelle in Zeichen_nach ersetzt. Beispiel: die Anweisung strtr("Buch", "ab",
"cd"); ersetzt jedes a mit einem c und jedes b mit einem d, unabhängig davon, ob die
Zeichen zusammenstehen.

Ansicht der Beispieldatei „str_umwandeln.php“

strtr(String, Zeichen_von [, Zeichen_nach]);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 161

 Die Länge der Zeichen in Zeichen_nach muss der Länge von Zeichen_von
entsprechen. Sind Zeichen_von und Zeichen_nach von unterschiedlicher Länge, so
werden die überzähligen Zeichen ignoriert, unabhängig davon, welcher Parameter weniger
Zeichen hat. Beide Parameter werden zuvor auf die gleiche Länge gekürzt.

 Alternativ kann strtr() mit nur zwei Parametern aufgerufen werden. In dem Fall muss
der zweite Parameter ein assoziatives Array sein. Der Schlüssel eines Arrayeintrags

entspricht dann dem Zeichen_von und wird mit dem Wert des Arrayeintrags

ausgetauscht, z. B. strtr("Buch", array("u" => "esu"));. Beim Aufruf mit
einem Array muss die gemeinsame Länge der Parameter nicht übereinstimmen, es wird
jeder gefundene Schlüssel mit dem vollständigen Wert ersetzt.

Syntax und Bedeutung der Funktion str_replace()

 Über die Funktion str_replace() können Sie ganze Wörter oder Textpassagen
vertauschen. Diese müssen nicht die gleiche Länge haben.

 Anders als bei strtr()wird hier nur eine ganze Zeichenkette ersetzt, nicht die einzelnen
Zeichen der Parameter.

 Hierbei ist zu beachten, dass erst der zu ersetzende, dann der hinzuzufügende String anzu‐
geben ist. Der zu untersuchende String wird in dieser Funktion als dritter Parameter
angegeben.

 Die Zeichen, die die Fundstellen ersetzen, können Buchstaben oder Zahlen sowie
vollständige HTML‐Tags beinhalten.

Bei der Angabe des zu ersetzenden Strings wird die Groß‐ und Kleinschreibung beachtet.

Beispiel: str_tauschen.php

 <?php
 echo "<p>strtr() 'Zeichen für Zeichen':";

 $string = "|-----|-----|-----|-----|";
 echo "
Vorher: $string";

 echo "
Nachher: " . strtr($string, '-|', 'x-') . "</p>";
 $string = "Wäre Jörg ein großer Sänger, würde er schöne Lieder
 singen.";
 echo "<p>strtr() flexibel mit Angabe eines Arrays:";
 echo "
Vorher: $string
";

 $feld = array("ä" => "ae", "ö" => "oe", "ü" => "ue", "ß" => "ss");

 echo "Nachher: " . strtr($string, $feld) . "</p>";
 echo "<p>str_replace():";
 $string = "Meine Tante lebt in Frankreich...";
 echo "
Vorher: $string";

 $string = str_replace("Tante", "Nichte", $string);
 echo "
Nachher (1): " . $string;

 $string = str_replace("Frankreich", "Italien", $string);
 echo "
Nachher (2): " . $string . "</p>";
?>

str_replace(String_von, String_nach, String);

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 162 © HERDT‐Verlag

 Die Variable $string wird mit
Zeichen gefüllt.

 Die Funktion strtr() wird
aufgerufen, das Zeichen - wird
durch x und das Zeichen i wird
durch - ersetzt. Das Ergebnis wird
ausgegeben.

 Ein Array wird definiert, das
Zeichenkettenpaare enthält.

 Die Schlüsselwerte werden in
einem Beispielsatz gesucht und
durch die dazugehörigen Werte
des entsprechenden Array‐
Elements ausgetauscht.

 Mit der Funktion

str_replace() soll das Wort
Tante durch das fett gedruckte
Wort Nichte ersetzt werden.

 Die Funktion str_replace() wird ein weiteres Mal aufgerufen. Auch in diesem Fall wird
eine Zeichenkettenersetzung dazu verwendet, um den Ländernamen auszutauschen und

zusätzlich das HTML‐Tag em einzufügen.

10.8 Mit Arrays und Zeichenketten arbeiten

Eine Zeichenkette in ein Array umwandeln

Wenn Sie eine Zeichenkette an einem bestimmten Trennzeichen aufteilen möchten und die
Teilstrings, die Sie dadurch erhalten, in einem Array speichern möchten, verwenden Sie die
Funktion explode().

Syntax und Bedeutung der Funktion explode()

 Die Funktion explode() ermöglicht es, eine Zeichenkette anhand eines Trennzeichens,
das Sie selbst bestimmten können, aufzuteilen und als einzelne Elemente in einem indizier‐
ten Array zu speichern. So können Sie beliebige Wertelisten mit demselben Trennzeichen,
z. B. alle Wörter eines Satzes per Trennung über das Leerzeichen, einfach in einem Array
speichern.

 Mit der optionalen Angabe von Limit können Sie die maximale Anzahl der zurückge‐

lieferten String‐Teile angeben. Besitzt eine Zeichenkette mehr Trennzeichen, als im Limit
angegeben wird, enthält das letzte Element des Arrays den Rest der Zeichenkette.

 Wird der Parameter Limit negativ angegeben, werden alle String‐Teile zurückgegeben, mit

Ausnahme der der Zahl Limit entsprechenden Anzahl von rechts gezählt. explode(","
, "a,b,c,d,e" , -2); beispielsweise liefert ein Array ohne die letzten beiden
Elemente, die mit einem Komma getrennt sind, also ohne d und e.

Anzeige der Beispieldatei „str_tauschen.php“

explode(Trennzeichen, String [, Limit]);

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 163

Aus einem Array eine Zeichenkette erzeugen

Mit der Funktion implode() können Sie die Elemente eines Arrays zu einer Zeichenkette
verbinden.

implode(Verbindungszeichen, Array);

 Mit dieser Funktion können Sie die einzelnen Elemente eines Arrays in einer Zeichenkette

zusammenführen.

 Zwischen den einzelnen Elementen steht jeweils das Verbindungszeichen, das Sie selbst
festlegen.

Beispiel: ex‐implode.php

In diesem Beispiel werden die Funktionen explode()und implode()verwendet.

 <?php

 $vorgabestring = "Elstar; Gala; Jonagold; Boskoop;
 Delicious";
 echo "<p>Vorgabe-Zeichenkette:
 $vorgabestring</p>";
 echo "<p>explode()</p>";

 $ausgabe = explode(";", $vorgabestring);

 $laenge = count($ausgabe);
 echo "<p>";

 for ($i = 0; $i < $laenge; $i++) {
 echo "Suchstring $i: $ausgabe[$i]
";
 }
 echo "</p>";
 echo "<pre>";

 print_r($ausgabe);
 echo "</pre>";
 echo "<p>implode()</p>";

 $ergebnis = implode(" * ", $ausgabe);
 echo "<p>Die Zeichenkette lautet:
$ergebnis</p>";
?>

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 164 © HERDT‐Verlag

 Der Variablen $vorgabestring wird eine
Zeichenkette mit Begriffen zugewiesen, die
durch Semikola voneinander getrennt sind.

 Mit der Funktion explode() wird diese
Zeichenkette am Semikolon aufgeteilt und in

der Variablen $ausgabe als indiziertes Array
gespeichert.

 Mithilfe der Array‐Funktion count() wird die
Länge des Arrays, also die Anzahl der Array‐
Elemente, festgestellt.

 Die Elemente des Arrays werden einzeln mit

einer for‐Schleife am Bildschirm ausgegeben.

 Der Inhalt des Arrays $ausgabe wird
zusätzlich mit dem speziellen Befehl

print_r() am Bildschirm ausgegeben. Wird

print_r() für ein Array aufgerufen, so
werden die Indizes und Werte des Arrays
angezeigt.

 Der Variablen $ergebnis werden mit der

Funktion implode() die einzelnen Array‐
Elemente des Arrays $ausgabe als
Zeichenkette, getrennt durch die Zeichenkette
" * ", zugewiesen und ausgegeben.

Anzeige der Beispieldatei „ex‐implode.php“

Lizenziert für ComCave College GmbH

Zeichenketten‐Funktionen 10

 © HERDT‐Verlag 165

10.9 Übungen

Übung 1: Mit Zeichenkettenfunktionen arbeiten

Level

Zeit ca. 15 min

Übungsinhalte  Zeichenkettenformatierung mit printf()

 Zeichenketten mit explode() in Arrays umwandeln

 Zeichenkenne mit implode() aus Arrays generieren

 Zeichenketten mit str_replace() austauschen

Übungsdatei ‐‐

Ergebnisdatei uebung.php

1. Nach einer Berechnung erhalten Sie eine Fließkommazahl mit diversen Nachkommastellen,

z. B. 78,123456789. Formatieren Sie die Ausgabe, sodass drei Stellen vor dem Komma
und fünf Nachkommastellen ausgegeben werden.

2. Gegeben sind folgende Variablen:

$string1 ="Beachten Sie das Angebot für die "
$string2 ="folgende Kalenderwoche: "
$string3 =" "

$string4 = "Bananen, 5 Kilo für nur 5.‐ Euro!"

Geben Sie die Variablen mithilfe der Funktion printf()in einer formatierten Zeichenkette
aus.

Setzen Sie hierfür die Länge der Variablen $string3, die mit dem festgelegten Zeichen *
gefüllt wird, auf 5 Zeichen. Trennen Sie die vier Variablen mit der Zeichenkette ‐‐‐ vonein‐
ander ab.

3. Fügen Sie die einzelnen Variablen in einer neuen Variablen $string aneinander. Die
Zeichenkette, die in der Variablen $string gespeichert wurde, soll mithilfe der Funktion

explode() am Zeichen " " (Leerstelle) getrennt werden und die einzelnen Elemente des
entstehenden Arrays sollen ausgegeben werden. Anschließend verwenden Sie die Funktion

implode(), um das Array in eine Zeichenkette zu speichern. Verwenden Sie als Trenn‐
zeichen das Zeichen # und geben Sie das Ergebnis aus.

4. Ersetzen Sie die Zeichenkette das Angebot durch die fett gedruckte Zeichenkette unser

Sonderangebot und speichern Sie das Ergebnis in der Variablen $string5. Tauschen Sie
die Zeichenkette Bananen durch die Zeichenkette Alle Obstsorten aus, speichern Sie das
Ergebnis in der Variablen $string6. Geben Sie das Ergebnis im Browser aus.

Lizenziert für ComCave College GmbH

 10 Zeichenketten‐Funktionen

 166 © HERDT‐Verlag

Übung 2: Suche nach der „Nadel im Heuhaufen“

Level

Zeit ca. 15 min

Übungsinhalte  Arbeiten mit Formularen

 Textsuche per substr_count()

 Zeichenketten mit str_replace() austauschen

Übungsdatei ‐‐

Ergebnisdatei textsuche.php

1. Entwerfen Sie eine Datei (textsuche.php) mit einem einfachen HTML‐Formular, in das Sie

einen Beispieltext in ein mehrzeiliges Eingabefeld und einen Suchbegriff in ein Eingabefeld
eintragen können. Die Auswertung der Suche soll in derselben Datei geschehen und Infor‐
mationen über die Anzahl der Treffer beinhalten (Funktion substr_count()), wenn der
Suchbegriff eingegeben wurde.

2. Um eine Fehlermeldung zu vermeiden, prüfen Sie per isset(), ob die $_POST‐Variable
für den Suchbegriff vorhanden ist.

3. Zudem soll der durchsuchte Text mit markierten Fundstellen unterhalb des Formulars

ausgegeben werden (Funktion str_replace()).

Orientieren Sie sich mit Ihrer Lösung an der nachfolgenden Abbildung einer Beispiellösung.

Textsuche in einem Beispieltext

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 167

11
11. Datum und Uhrzeit

Beispieldateien: Dateien aus Ordner Kap11

11.1 Datum und Zeit ermitteln

In vielen PHP‐Skripten sind Datums‐ und Zeitberechnungen notwendig. PHP verwendet dabei das
Datum und die Uhrzeit des Servers, auf dem das Programm läuft.

Datum und Zeit auslesen

Informationen zu Datum und Zeit erhalten Sie über die Funktion getdate(). Diese Funktion
liefert das Ergebnis in einem assoziativen Array zurück.

Syntax der getdate()‐Anweisung

 getdate() gibt ein assoziatives Array zurück. Über
von PHP vordefinierte Schlüssel können Sie auf
bestimmte Zeit‐ bzw. Datumsinformationen zugreifen. Die nachfolgende Tabelle gibt Ihnen
einen Überblick, welche Werte im Rückgabe‐Array zu finden sind.

 getdate()kann ohne Parameter aufgerufen werden. In dem Fall erhalten Sie die aktuellen
Datums‐ und Zeitwerte des Webservers, also die Informationen zum Zeitpunkt des Aufrufs.

 getdate()kann optional mit einem Parameter Zeitstempel aufgerufen werden. Der
Parameter Zeitstempel erwartet die Anzahl der Sekunden, die seit dem 01.01.1970
vergangen sind. Sämtliche Zeitangaben in PHP beruhen auf diesem Datum, das auch als
Beginn der UNIX‐Epoche bezeichnet wird. Aus diesem Grund wird der Zeitstempel als UNIX‐

Timestamp oder kurz Timestamp bezeichnet. getdate()gibt dann ein Array zurück, in
dem die Werte bezogen auf den Timestamp enthalten sind.

getdate([Zeitstempel]);

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 168 © HERDT‐Verlag

Schlüssel Erklärung Rückgabewerte

seconds Sekunde der aktuellen Uhrzeit 0 bis 59

minutes Minute der aktuellen Uhrzeit 0 bis 59

hours Stunde der aktuellen Uhrzeit 0 bis 23

mday Tag des aktuellen Monats 1 bis 31

wday Numerischer Tag der Woche 0 = Sonntag, 1 = Montag, ... 6 =
Samstag

mon Monat als Zahl 1 = Januar, 2 = Februar, ... 12 =
Dezember

year Jahreszahl 1970 bis 2038

yday Numerischer Tag des Jahres 0 bis 365

weekday Ausgeschriebener Wochentag (in Englisch) Sunday, Monday, ... , Saturday

month Ausgeschriebener Monat (in Englisch) January, February, ... ,
December

0 Sekunden seit 01.01.1970 0 bis ...

Beispiel: aktuell.php

Die Informationen im Rückgabearray von der Funktion getdate()zum jetzigen Zeitpunkt (ohne
Aufruf eines Zeitstempels) sollen angezeigt werden. Dazu wird jedes Element des assoziativen
Arrays angesprochen.

 <?php

 $jetzt = getdate();
 echo "<pre>";

 print_r($jetzt);
 echo "</pre>";

 echo "<p>Stunde: " . $jetzt["hours"];
 echo "
Minute: " . $jetzt["minutes"];
 echo "
Sekunde: " . $jetzt["seconds"];

 echo "
Tag der Woche: " . $jetzt["wday"] . " = " .$jetzt["weekday"];

 echo "
Tag des Monats: " . $jetzt["mday"];

 echo "
Tag des Jahres: " . $jetzt["yday"];

 echo "
Monat: " . $jetzt["mon"] . " = " . $jetzt["month"];

 echo "
Jahr: " . $jetzt["year"];

 echo "
Zeitstempel: " . $jetzt["0"] . "</p>";
?>

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 169

 Über die Funktion getdate() wird die aktuelle
Zeit‐ und Datuminformation des Webservers aus‐

gelesen und in der Variablen $jetzt gespei‐
chert. Dabei handelt es sich um ein assoziatives
Array.

 Mithilfe der Funktion print_r() wird die
Arrayvariable $jetzt im Browser ausgegeben.

 Die Stunden‐, Minuten‐ und Sekundenwerte der
aktuellen Zeit werden über die entsprechenden,

vordefinierten Schlüssel im Array $jetzt ange‐
sprochen und ausgegeben.

 Der Wert des Arrayeintrags $jetzt["wday "]
liefert einen numerischen Wert, welcher den
Wochentag repräsentiert. In diesem Fall der Wert

1 für Monday (Montag). Beachten Sie, dass die

Zählung der Wochentage bei 0 = Sonntag beginnt.
Hinter der Zahl für den Wochentag wird über den

Arrayschlüssel weekday der Name des Wochen‐
tags ausgegeben. Mit der PHP‐Standard‐
installation erhalten Sie die englischen
Bezeichnungen.

 Über den Schlüssel mday erhalten Sie den Tag des
Monats als Zahlenwert.

 Der Wert $jetzt["yday"] liefert einen numerischen Wert. Dieser entspricht dem

n‐ten Tag im Jahr.

 Über die Schlüssel mon und month erhalten Sie den Zahlenwert sowie den englischen
Namen des Monats.

 Hiermit erhalten Sie das Jahr des aktuellen Datums.

 Als letzte Ausgabe wird der aktuelle Zeitstempel in Sekunden seit dem 01.01.1970 ausge‐

geben. Falls Sie getdate() mit einem Zeitstempel aufgerufen haben, finden Sie den Wert
hier wieder.

11.2 Datum und Zeit formatieren

Mit der date()‐Funktion können Sie ein Datum für die Ausgabe formatieren.

Syntax und Bedeutung der date()‐Anweisung

 Die date()‐Anweisung erwartet als
Parameter Formatanweisungen, welche
Datumssegmente angezeigt werden sollen. In der nachfolgenden Tabelle finden Sie eine
Übersicht der wichtigsten Angaben und deren Auswirkungen.

 Der Parameter Format wird als Zeichenkette in Anführungszeichen “” angegeben.

Daten des 30.05.2016 um 10:14:46 Uhr

date(Format [, Zeitstempel]);

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 170 © HERDT‐Verlag

 In der Zeichenkette können Sie Punkte ., Doppelpunkte 5 oder Leerzeichen Þ verwenden,
welche in Ihrer Formatierung dargestellt werden sollen. Aber auch Buchstaben und andere
Zeichen sind möglich. Die Buchstaben, die als Formatanweisung in PHP implementiert sind,
werden „übersetzt“, nicht bekannte Buchstaben bleiben als solche erhalten.

 date() kann mit nur dem ersten Parameter der Formatanweisungen aufgerufen werden.
In dem Fall erhalten Sie den formatierten Datumsstring des aktuellen Zeitpunkts zurück.

 Der optionale zweite Parameter Zeitstempel ermöglicht Ihnen, ein spezielles Datum
anzugeben. Dieser Zeitstempel entspricht den Sekunden seit dem 01.01.1970.

Formatanweisungen (Auswahl)

Von einer langen Liste möglicher Formatanweisungen, die Sie im Parameter Format angeben
können, finden Sie die wichtigsten in nachfolgender Tabelle. Über die einzelnen Format‐Zeichen
steuern Sie, welche Elemente des Datums genutzt und in welchem Format diese formatiert
werden sollen.

Eine vollständige Übersicht aller Format‐Zeichen finden Sie unter
http://php.net/manual/de/function.date.php.

Format‐Zeichen Resultat

d Tag des Monats, zweistellig und mit führender Null: 01 bis 31

G Stunde im 24‐Stunden‐Format ohne führende Null: 0 bis 23

H Stunde im 24‐Stunden‐Format mit führender Null: 00 bis 23

i Minuten mit führender Null: 00 bis 59

j Tag des Monats ohne führende Null: 1 bis 31

m Zahl des Monats mit führender Null: 01 bis 12

n Zahl des Monats ohne führende Null: 1 bis 12

r Formatierte Ausgabe nach RFC 822/2822, z. B. Thu, 28 May 2009
23:43:51 +0200

s Sekunden mit führender Null: 00 bis 59

Y (großes Y) Jahr als vierstellige Zahl, z. B. 2001

y (kleines y) Jahr als zweistellige Zahl, z. B. 01

Die Funktion date() unterstützt nur Zeiten zwischen dem 13.12.1901 und 19.01.2038 (vor
PHP 5.1.0 lag dieser Zeitraum z. B. bei Windows zwischen 01.01.1971 und 19.01.2038). Wird
ein Datum vor bzw. nach diesen Eckdaten aufgerufen, gibt der PHP‐Interpreter je nach Web‐
server und Betriebssystem entweder den 01.01.1970 oder ein anderes falsches Datum aus,
jedoch ohne eine spezielle Fehlermeldung anzuzeigen.

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 171

Beispiel: date.php

In diesem Beispiel sollen die verschiedenen Angaben der Formatanweisungen sichtbar gemacht
werden.

 <?php

 echo "<p>" . date("d.m.y");

 echo "
" . date("d.m.Y", time() + 86400);

 echo "
Tag: " . date("d.m.Y") . ", Uhrzeit: ".
 date("H:i:s");

 echo "
" . date("j.n.y");

 echo "
" . date("r") . "</p>";
?>

 Mit der Formatanweisung d.m.y werden Tag, Monat und Jahr jeweils zweistellig forma‐

tiert. Über die echo‐Anweisung geben Sie die formatierte Zeichenkette im Browser aus.

 In diesem Funktionsaufruf mit der Formatanweisung

d.m.Y wird die Jahresangabe vierstellig dargestellt.
Als zweiter Parameter wird hier ein Zeitstempel über‐
geben, welcher im Funktionsaufruf berechnet wird.

Über time() (vgl. Abschnit 11.5) wird der aktuelle
Zeitstempel ermittelt, zu diesem Wert werden

86400 Sekunden hinzuaddiert. 86400 ist das
Ergebnis aus 24 * 60 * 60 (Stunden * Minuten *
Sekunden), also der Sekundenanzahl eines Tages. Der
übergebene Zeitstempel entspricht also genau einem
Tag in der Zukunft. Um den Aufruf nachvollziehbarer

zu gestalten, können Sie auch date("d.m.Y",
time() + 24 * 60 * 60) im PHP‐Code
schreiben. Da Punkt‐ vor Strichrechnung gilt, werden
zuerst die Sekunden pro Tag berechnet und dann zum
aktuellen Zeitstempel hinzuaddiert.

 Hier werden zusätzlich zu Datum und Zeit weitere Zeichenketten ausgegeben.

 Die Funktion date() wird aufgerufen. Die Ausgabe von Tag und Monat erfolgt ohne
führende Nullen, die des Jahres erfolgt zweistellig.

 Die Anweisung r gibt standardmäßig das Datum und die Uhrzeit nach den im Standard RFC
822/2822 festgelegten Regeln aus. Diese Formatierung wird beispielsweise als Angabe von
Uhrzeit und Datum im Mailheader, dem nicht sichtbaren Kopfbereich einer E‐Mail,
verwendet.

Anzeige der Beispieldatei „date.php“

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 172 © HERDT‐Verlag

11.3 Datumsangabe an Sprache anpassen

Englische Monatsbezeichnungen manuell übersetzen

Bei der Ermittlung des aktuellen Datums erhalten Sie die englischen Tages‐ und Monatsbezeich‐
nungen. Auf einer deutschsprachigen Webseite soll das Datum jedoch in deutscher Sprache aus‐
gegeben werden. Das nachfolgende Beispiel wandelt mithilfe eines selbst erstellten Arrays die
englischen Bezeichnungen in die entsprechenden deutschen Namen um.

Beispiel: monat_dt.php

Über ein Array sollen beim Auslesen des aktuellen Datums die deutschsprachigen Bezeichnungen
der Monate ausgegeben werden.

 <?php

 $monat = array(1 => "Januar", "Februar", "März", "April",
 "Mai", "Juni", "Juli", "August", "September",
 "Oktober", "November", "Dezember");

 $datum = getdate();
 echo "<p>Englischsprachige Bezeichnung des Monats";
 echo "
Heute ist der " . $datum["mday"] . ". ";

 echo $datum["month"] . " " . $datum["year"] . ".</p>";
 echo "<p>Deutschsprachige Bezeichnung des Monats";
 echo "
Heute ist der " . $datum["mday"] . ". ";

 echo $monat[$datum["mon"]] . " " . $datum["year"] . ".</p>";
?>

 Die Namen der Monate werden im Array

$monat definiert. Für Januar, den ersten
Eintrag, wird der Index 1 vergeben. Diese
Zuweisung wird vorgenommen, damit die
Monatsnamen die dazugehörigen
Monatszahlen als Index erhalten. Da bei
indizierten Arrays für das nächste Element
immer der nächst höhere Index verwendet
wird, reicht es hier, lediglich den ersten
Array‐Eintrag mit dem Index 1 zu versehen.
Die Indexe 2 – 12 werden dann vom PHP‐
Interpreter automatisch und den Monaten
entsprechend vergeben.

  In der Array‐Variablen $datum werden die
Datumswerte gespeichert.

 Über den Arrayschlüssel month wird der
englische Name des Monats ausgegeben.

 Damit ein bestimmtes Element des Arrays $monat über den Index angesprochen werden
kann, benötigen Sie den Monat als Zahl. Die Zahl liefert Ihnen $datum["mon"]. Es folgt
die erneute Ausgabe des aktuellen Datums. Diesmal wird der Wert aus dem von Ihnen ange‐
legten Array $monat mit dem Wert von $datum["mon"] angesprochen und angezeigt.

Englische und deutsche Monatsbezeichnungen
(Beispieldatei „monat_dt.php“)

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 173

11.4 Länder‐ und Spracheinstellungen ändern

Einstellungen für deutsche Sprache festlegen

PHP unterstützt bei Länder‐ und sprachspezifischen Informationen eine Reihe verschiedener
Sprachen. Dies bedeutet, Sie können beispielsweise die deutsche Bezeichnung von Monats‐

namen direkt ausgeben lassen. Dazu müssen Sie über die Funktion setlocale() die ent‐
sprechende Sprache einstellen.

Syntax und Bedeutung der setlocale()‐Anweisung

 Der erste Parameter Kategorie legt fest,
auf welche Angaben sich die Umstellung der
Sprache auswirken soll. Folgende Angaben
sind möglich:

LC_ALL alle Einstellungen

LC_COLLATE für den Vergleich von Zeichenketten

LC_CTYPE betrifft Klassifizierungen und Umwandlung von Zeichen

LC_MONETARY für Währungsfunktionen

LC_NUMERIC für das Dezimal‐Trennzeichen bei Zahlen

LC_TIME betrifft Zeit‐ und Datumsformatierungen

 Der zweite Parameter legt die anzuwendende Sprache und Region fest und wird in Hoch‐
kommata angegeben. Folgende Werte sind zulässig (Auszug aus einer Liste von mehr als
50 möglichen Werten): Nachfolgende Kurzbezeichner wurden bisher in PHP integriert:

de_DE Deutschland

de_AT Österreich

de_CH Schweiz

fr_FR Frankreich

en_GB Großbritannien

en_US USA

Die Funktion setlocale()ist systemabhängig. Sollten die Werte für die anzuwendende
Sprache nicht greifen, verwenden Sie alternativ die dreibuchstabigen Sprachcodes nach ISO 639,
z. B. deu, fra oder eng. Alternativ kann auch die Schreibweise 'deu_deu' zum Erfolg führen.

Nachfolgend wird die deutsche Sprache für alle Werte eingestellt.

setlocale(LC_ALL, "de_DE");

setlocale(Kategorie, Sprache);

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 174 © HERDT‐Verlag

Datum und Zeit sprachspezifisch ausgeben

Um aktuelle Zeit‐ und Datumswerte anhand der eingestellten lokalen Informationen nutzen zu

können, steht Ihnen die Funktion strftime() zur Verfügung.

Ähnlich der Funktion date() können Sie über strftime() ein Datum für eine Ausgabe
formatieren. Hierbei ist jedoch zu beachten, dass sich die Formatanweisungen der beiden
Funktionen grundlegend unterscheiden.

Syntax der strftime‐Anweisung

 Die Anweisung erwartet als ersten
Parameter die Formatanweisungen.

 Ohne die Angabe des zweiten Parameters Zeitstempel liefert die Funktion die aktuelle
Datums‐ und Zeitinformation zurück.

Ausgewählte Formatanweisungen

Mit diesen Formatanweisungen bestimmen Sie, welche Elemente des Datums genutzt werden
sollen. Alle Formatanweisungen sind in Anführungszeichen SS anzugeben.

Format‐Zeichen Resultat

%a Abgekürzter Tag der Woche

%A Bezeichnung für den Wochentag

%b Abgekürzter Monatsname

%B Name des Monats

%d Tag des Monats mit führender Null: 01 bis 31

%H Stunde im 24‐Stunden‐Format mit führender Null: 00 bis 23

%j Tag des Jahres von 1 bis 366

%m Zahl des Monats mit führender Null: 01 bis 12

%M Minuten mit führender Null: 00 bis 59

%S Sekunden mit führender Null: 00 bis 59

%x Datumswiedergabe ohne Zeit

%X Zeitwiedergabe ohne Datum

%Y (großes Y) Jahr als vierstellige Zahl, z. B. 2010

%y (kleines y) Jahr als zweistellige Zahl, z. B. 09

%Z Sommerzeit

%D Wie %m/%d/%y

%T Wie %H:%M:%S

Eine vollständige Übersicht aller Format‐Zeichen finden Sie unter
http://php.net/manual/en/function.strftime.php.

strftime(Format [, Zeitstempel]);

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 175

Beispiel: strftime.php

Analog zum Beispiel der date()‐Funktion werden die Datums‐ und Zeitangaben mit der

strftime()‐Funktion gezeigt. Sie kann im Gegensatz zur Funktion date() die lokalen
Einstellungen über setlocale() berücksichtigen.

 <?php
 setlocale(LC_ALL, "deu");
 echo "<p>";

 echo strftime("%A %d %B %Y %H:%M:%S", time()) . "
";

 echo strftime("%a., %d. %b. %y um %X", time()) . "
";

 echo strftime("%x = %j. Tag des Jahres %Y", time()) ."
";

 echo strftime("%a, %d %b %Y %X", time()). "</p>";
?>

Anzeige der Beispieldatei „strftime.php“

11.5 Zeitfunktionen

Aktuelle Zeit mit der Funktion time() bestimmen

Die Zeit, die seit dem 01.01.1970 um 00:00:00 Uhr (Greenwich‐Zeit; GMT Greenwich Mean Time)
vergangen ist, wird auch UNIX‐Timestamp (oder einfach Zeitstempel) genannt und wird in
Sekunden berechnet. Dies ist für die weiteren Zeit‐ und Datumsfunktionen von Bedeutung,
da alle weiteren Datums‐ und Zeitberechnungen auf dieser Angabe beruhen.

Syntax der Funktion time()

 Diese Funktion ist ohne die Angabe eines Parameters zu verwenden.

 Da diese Funktion den aktuellen Zeitstempel zurückgibt, können Sie auch durch einfache
Addition bzw. Subtraktion von Sekunden andere Zeitstempel als den aktuellen generieren.

So erhalten Sie z. B. durch die Berechnung: time() - 7 * 86400 (ein Tag = 86400
Sekunden) den Zeitstempel für den Zeitpunkt vor genau einer Woche.

time();







Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 176 © HERDT‐Verlag

UNIX‐Timestamp eines Datums mit der Funktion mktime() bestimmen

Um den Zeitstempel, also die Sekunden vom 01.01.1970 bis zum angegebenen Datum, zu

erhalten, verwenden Sie die mktime()‐Funktion.

Syntax und Bedeutung der Funktion mktime()

mktime([Stunde [, Minute] [, Sekunde] [, Monat] [, Tag] [, Jahr]);

 Die Funktion erwartet optional die sechs angegebenen Parameter.

 Einzelne Parameter können Sie von rechts nach links weglassen, also zuerst Jahr, dann
Tag, Monat usw. PHP verwendet bei fehlenden Werten den aktuellen Datums‐ oder Zeit‐

wert des Webservers. Dies bedeutet, dass beim Aufruf von mktime() ohne Parameter

dasselbe Ergebnis zurückgeliefert wird wie bei time().

 Möchten Sie einen Wert nicht angeben, ersetzen Sie ihn durch die Zahl 0. Dies kann sinnvoll
sein, wenn Sie nur mit dem Datum arbeiten wollen. In dem Fall setzen Sie die Parameter
Stunde, Minute und Sekunde auf den Wert 0.

Beispiel: date_diff.php

Anhand eines vorgegebenen Datums wird die Differenz zum aktuellen Datum berechnet.

 <?php

 $tag = 15;
 $monat = 1;
 $jahr = 1969;

 $start = mktime(0, 0, 0, $monat, $tag, $jahr);

 $diff = time() - $start;

 echo " <p>" . (floor($diff / 86400)) . "
 Tage liegen zwischen ";

 echo "heute (" . date("d.m.Y") . ") und dem " .
 date("d.m.Y", $start) . ".</p>";
?>

 Die Variablen werden mit den

Angaben eines Datums gefüllt, hier:

15.1.1969.

 Aus diesen Angaben werden über

die Funktion mktime() die bis
dato vergangenen Sekunden
berechnet und in der Variablen

$start gespeichert. Da Stunden‐,
Minuten‐ und Sekundenwerte für
dieses Beispiel keine Rolle spielen,

werden sie jeweils mit dem Wert 0
angegeben.

Ausgabe der Differenz zweier Daten (Beispieldatei
„date_diff.php“)

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 177

 Aus dem aktuellen Zeitstempel time() und dem Zeitstempel der Variablen $start wird
die Differenz zum jetzigen Zeitpunkt berechnet. Der Wert liegt in Sekunden vor.

 Um aus den Sekunden einen Wert in Tagen zu berechnen, wird dieser durch 86400
dividiert. Der Wert 86400 entspricht der Anzahl der Sekunden pro Tag (24 * 60 * 60).
Die zusätzlich verwendete Funktion floor() rundet eine Fließkommazahl auf die nächst

kleinere Ganzzahl ab, z. B. ergibt floor(139.35) 139.

 Das aktuelle sowie das im Beispiel definierte Datum wird über die Funktion date() for‐
matiert ausgegeben. Da diese Funktion als optionalen Parameter den Zeitstempel in Sekunden

erwartet, wird der bereits gespeicherte Zeitstempel über die Variable $start übergeben.

Genaue Zeitstempel und Zeitspannen mit der Funktion
microtime()berechnen
Je nach Anwendungsfall kann es nicht ausreichen, Zeitstempel lediglich in Sekunden zur Ver‐
fügung zu haben. Für geringere Zeiteinheiten steht in PHP die Funktion microtime() zur
Verfügung. microtime() liefert den aktuellen Zeitstempel in Mikrosekunden zurück. Wegen
ihrer größeren Genauigkeit wird die Funktion häufig zur Berechnung von Zeitspannen verwendet,
z. B. zur Berechnung der Ausführungsdauer von komplexeren Programmen.

Syntax der Funktion microtime()
 Diese Funktion kann ohne die Angabe eines

Parameters verwendet werden und liefert dann den
aktuellen Zeitstempel in der Form Mikrosekunden Sekunden.

 Wird der Parameter TRUE angegeben, erfolgt die Ausgabe des Zeitstempels in Mikro‐

sekunden als Gleitkommazahl. Ansonsten wird der Standardwert FALSE verwendet.

Beispiel: microtime.php

Die Funktion wird mit und ohne Parameter aufgerufen. Zusätzlich wird die Ausführungsdauer
einer Befehlsfolge berechnet.

 <h1>microtime(): Zeitstempel mit und ohne Parameter</h1>
<?php

 echo "Funktionsaufruf ohne Parameter: " . microtime() .
 "
";
 echo "Funktionsaufruf mit Parameter: " . microtime(TRUE);
?>
<h1>Zeitmessung mit microtime()</h1>
<?php
 echo "<p>Berechnung der Quadratzahlen von
 1 - 100000
";

 $start = microtime(TRUE);

 for ($i = 1; $i <= 100000; $i++) {

 echo "$i: " . sqrt($i) . "
";
 }

microtime([TRUE/FALSE]);

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 178 © HERDT‐Verlag

 $ende = microtime(TRUE);

 echo "Ausführungsdauer: " . ($ende - $start) . "
 Sekunden.</p>";
?>

 Die Funktion microtime() wird mit und ohne
Parameter aufgerufen und am Bildschirm ausgegeben.

 Der Variablen $start wird der aktuelle Zeitstempel
vor Ausführen der Schleife  in Mikrosekunden
zugewiesen.

 In einer Schleife erfolgt die Berechnung und Ausgabe
der Quadratwurzeln der Zahlen von 1 bis 100000.

 Der Variablen $ende wird der aktuelle Zeitstempel
nach Ausführung der Schleife  in Mikrosekunden
zugewiesen.

 Die Variable $start wird von der Variablen $ende
subtrahiert, um die Ausführungsdauer der Schleife zu
berechnen.

Zeitstempel einer englischen Datumsangabe

Die Funktion strtotime() wandelt ein beliebiges Datum, das in englischer Schreibweise
angegeben werden muss, in einen Zeitstempel um.

Syntax und Bedeutung der Funktion strtotime()

 Im Parameter Datumsangabe
wird eine englische Datums‐
angabe als Zeichenkette übergeben.

Der Zeitstring, der strtotime() übergeben wird, kann sowohl eine Zeichenkette im eng‐
lischen Dateiformat sein, es können aber auch sprechende Rechenoperationen angegeben
werden. Die Varianten des Zeitstring sind vielfältig. Die nachfolgende Tabelle zeigt einige Bei‐
spiele, weitere Beispiele finden Sie unter http://php.net/manual/de/function.strtotime.php.

strtotime("now"); Gibt die aktuelle Zeit des Servers aus.

strtotime("24 May 2015"); Gibt den Zeitstempel für den 24. Mai 2015
um 00:00:00 Uhr aus.

strtotime("+1 day"); Fügt dem aktuellen Datum einen Tag hinzu.

strtotime("-1 week"); Zieht von der aktuellen Zeit genau eine
Woche ab.

strtotime("+1 week 2 days 4 hours
 2 minutes");

Rechnet zur aktuellen Zeit eine Woche, zwei
Tage, vier Stunden und zwei Minuten hinzu.

Ausgabe der Beispieldatei „micro‐
time.php“ (ohne die 100000 echo‐
Anweisungen )

strtotime(Datumsangabe[,Zeitstempel]);

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 179

Anzeige der verschiedenen Parameter (Beispieldatei „strtotime.php“)

11.6 Datumsangaben überprüfen

Datums‐ bzw. Zeitangabe auf Gültigkeit überprüfen

Um eine Datumsangabe auf Gültigkeit zu überprüfen, benutzen Sie die Funktion checkdate().

Syntax und Bedeutung der checkdate()‐Anweisung

 Die Anweisung erwartet als Parameter den

Monat, den Tag sowie das Jahr. Achten Sie bei
der Übergabe der Daten auf die richtige Reihenfolge.

 Monat kann einen Wert zwischen 1 und 12 besitzen. Der Tag ist jeweils abhängig vom

Monat. Das Jahr kann einen Wert zwischen 1 und 32767 besitzen.

 Als Rückgabewert liefert die Funktion den Wert TRUE, falls das Datum existiert, sonst

FALSE.

Beispiel: checkdate.php

Im Beispiel wird ein Formular erstellt, das die Eingabe eines Datums in ein HTML‐Formular vor‐
sieht. In derselben Datei wird mit PHP überprüft, ob das eingegebene Datum gültig ist.

 <form action="<?php echo $_SERVER["PHP_SELF"]; ?>"
 method="post">
 Geben Sie ein beliebiges Datum im Format TT.MM.JJJJ ein:
 <input type="text" name="datum" size="10" maxlength="10">
 <input type="submit" name="absenden" value="Prüfen">
 </form>
 <?php

 error_reporting(E_PARSE | E_ERROR);

 if (isset($_POST["absenden"])) {

checkdate(Monat, Tag, Jahr)

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 180 © HERDT‐Verlag

 $data = explode(".", $_POST["datum"]);

 if ((!checkdate($data[1], $data[0], $data[2]))
 or (count($data) != 3)) {
 echo("<p>" . $_POST["datum"] . " ist kein korrektes
 Datum!</p>");
 } else {
 echo("<p>Das Datum " . $_POST["datum"] . " ist
 korrekt!</p>");
 }
 }
?>

 Die Angabe von $_SERVER["PHP_SELF"]
im action‐Parameter des HTML‐Formular‐

Tags form legt fest, dass die Formulardaten an
die Datei checkdate.php selbst zur Auswertung
gesendet werden.

 Das error_reporting() wird auf
schwerwiegende Fehler eingestellt, um
Warnungen und Hinweise zu unterdrücken, die
seit PHP 5.4 standardmäßig angezeigt werden.
Wird diese Einstellung nicht vorgenommen,

erzeugt checkdate() Meldungen vom Typ
Notice und Warning, falls

$_POST["datum"] kein korrektes
Datumsformat hat.

 Es erfolgt die Prüfung auf Existenz der
Variablen $_POST["absenden"].

 Der Arrayschlüssel absenden ist in der globalen $_POST ‐Variable nur dann vorhanden,
wenn die Schaltfläche Prüfen gedrückt und damit die Variable absenden aus dem Formular

übermittelt wurde. Ergibt die Prüfung TRUE, wurde das Formular versendet und der
Anweisungsblock wird ausgeführt. Anderenfalls ist das Formular noch nicht versendet
worden, der Anweisungsblock wird übersprungen.

 Das vom Nutzer eingegebene Datum wird über die Zeichenkettenfunktion explode() an
den Dezimalstellen . getrennt, die einzelnen Segmente werden von PHP als indiziertes
Array $data gespeichert.

 Zum Testen des Datums werden über die einzelnen Einträge des Arrays $data übergeben.
Wird die Eingabe korrekt nach dem Muster TT.MM.JJJJ vorgenommen, ist nach dem

Einsatz von explode() der Monat das zweite Arrayelement (mit dem Index 1), der Tag ist
der erste Eintrag im Array (Index 0), das Jahr der dritte Eintrag (Index 2). Je nach Rückgabe
der checkdate()‐Funktion und der Elementanzahl des Arrays $data wird eine ent‐
sprechende Mitteilung im Browser ausgegeben.

Ausgabe der Beispieldatei „checkdate.php“
nach Eingabe des 31.06.2016 und Klick auf den
Prüfen‐Button

Lizenziert für ComCave College GmbH

Datum und Uhrzeit 11

 © HERDT‐Verlag 181

11.7 Übungen

Übung 1: Mit Datums‐ und Zeitangaben arbeiten

Level

Zeit ca. 15 min

Übungsinhalte  Verwenden der date()‐Funktion

 Formatierungen für date() umsetzen

 Lokale Datumseinstellungen

 Datumsformatierung per strftime()

 Datumsüberprüfung mit getdate()

Übungsdatei ‐‐

Ergebnisdatei date_time.php

1. Geben Sie mithilfe der Funktion date() folgende Datums‐ und Zeitangaben aus. Die

Angaben werden automatisch durch das aktuelle Datum ersetzt.

30.05.16
30-05-2016
30.05.2016 - 11:45:22
05/30/16 - 11:45 AM
2016-05-30
11:05 Uhr

2. Die Funktion date() liefert die Tagesnamen standardmäßig in englischer Sprache zurück.

Lassen Sie sich den aktuellen Wochentag mittels setlocale() und strftime() in
deutscher Sprache ausgeben.

3. Lesen Sie für den aktuellen Zeitstempel den Wochentag aus. Verwenden Sie die Fallauswahl

switch, um für alle möglichen Wochentage eine beliebige Bildschirmausgabe festzulegen,
z. B. Heute ist Dienstag.

Lizenziert für ComCave College GmbH

 11 Datum und Uhrzeit

 182 © HERDT‐Verlag

Übung 2: Zeitmessung durchführen

Level

Zeit ca. 10 min

Übungsinhalte  Verwendung der Funktion microtime()

 Vergleich unterschiedlicher Programmieransätze

 Einsatz von PHP‐Funktionen

Übungsdatei ‐‐

Ergebnisdatei vergleich.php

Ein Bekannter behauptet, dass PHP Quadratzahlen am schnellsten berechnet werden, wenn man
eine Funktion zur Berechnung von Quadratzahlen erstellt und diese aufruft. Da Sie sich nicht
sicher sind, ob eine direkte Berechnung oder der Aufruf einer Funktion schneller ist, wollen Sie
beide Varianten vergleichen.

1. Erstellen Sie eine Datei (vergleich.php) und berechnen Sie mit einer for‐Schleife die
Quadratzahlen für die Zahlen 1 bis 10000 – einmal über Aufruf einer selbst definierten
Funktion und einmal durch direkte Berechnung. Verwenden Sie die Funktion
microtime(), um die Ausführungsdauer beider Berechnungsarten zu vergleichen.

2. Geben Sie das Ergebnis des Vergleichs auf dem Bildschirm aus.

Anzeige der Beispiellösung (Datei „vergleich.php“)

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 183

12
12. Sessions

Beispieldateien: Dateien aus Ordner Kap12

12.1 Mit Sessions arbeiten

Grundlagen zu Sessions

Eine Datenübertragung im Internet erfolgt über das Protokoll HTTP. HTTP ist allerdings ein
zustandsloses Protokoll, das heißt, mehrere Anfragen, also Seitenaufrufe – auch desselben Seiten‐
besuchers – werden grundsätzlich als voneinander unabhängige Aktionen betrachtet. Daten, die ein
Benutzer beispielsweise in ein Formular eingegeben hat, werden in Variablen nur bis zum aus‐
wertenden PHP‐Programm weitergegeben. Bereits auf der übernächsten aufgerufenen Webseite
sind die Daten nicht mehr vorhanden. Der Webserver kann also, wenn keine weiteren Maßnahmen
ergriffen wurden, nicht feststellen, welche Seitenaufrufe vom selben Benutzer kommen.

Für diverse Abwicklungen auf Webseiten benötigen Sie jedoch genau eine Funktionalität, über
die Sie einen Besucher wiedererkennen und mit ihm verbundene Daten zwischenspeichern
können. Sie wollen z. B. über mehrere Webseiten Eingaben ermöglichen und dann als Bestellung
absenden (Shopsystem). Oder Sie möchten, dass sich auf Ihren Webseiten Benutzer einloggen
können und möchten auf jeder weiteren Seite prüfen, ob der Benutzer durch seine Anmeldung
autorisiert ist, die jeweilige Seite aufzurufen.

Gerade bei sogenannten personalisierten Seiten, die auf den Benutzer „reagieren“, ist es notwen‐
dig, bestimmte Daten, z. B. den Login‐Status, von Seite zu Seite mitzuführen bzw. weiterzugeben.

PHP unterstützt diese Anforderungen mithilfe von Sessions (Sitzungen). Eine Session bietet die
Möglichkeit, Daten während eines Webseitenbesuchs über mehrere Seiten zwischenzuspeichern
und für jede einzelne Seite verfügbar zu halten. Der Nutzen einer Session liegt darin, dass wäh‐
rend einer Session Daten gespeichert und diese von jeder weiteren PHP‐Seite weiterverwendet
werden können. Eine Session endet,

 wenn der Benutzer den Browser schließt,

 wenn eine Webseite mit entsprechenden Befehlen aufgerufen wird,

 nach einer definierten Zeitspanne

 oder – je nach Programmierung – auch beim Verlassen der Webseiten, auf denen die Session
definiert wurde.

Lizenziert für ComCave College GmbH

 12 Sessions

 184 © HERDT‐Verlag

Die Standarddauer einer Session beträgt 1440 Sekunden (24 Minuten). Mit jedem neuen
Seitenaufruf während der Sitzung wird diese erneut gesetzt. Nach 1440 Sekunden Inaktivität
wird die Sitzung des Seitenbesuches beendet. Zum Beenden einer Session reicht oft das
Schließen eines einzelnen Tabs des Browsers nicht aus. Die Session wird erst beendet, wenn
der Browser komplett geschlossen wird.

Session‐IDs: Identifikation einer Session

Damit Informationen zu einem Besucher innerhalb einer Website seitenübergreifend verwaltet
werden können, erhält ein Besucher beim ersten Zugriff auf mit Sessions definierte Webseiten
eine zufällige, eindeutige 32‐stellige ID, die Session‐ID. Diese wird bei jedem Aufruf einer Seite
an den Webserver gesendet, woran dieser den Besucher wiedererkennt. Anhand der Session‐ID
können gespeicherte Daten zugeordnet werden.

Solange der Besucher auf den Webseiten verweilt, auf denen die Session gestartet wurde, wer‐
den auf dem Webserver benutzerbezogene Daten in einer Session‐Datei gespeichert. Dieses
können z. B. Formulareingaben des Nutzers sein, aber auch Daten, die anhand von Login‐Daten
aus Datenbanken oder anderen Quellen ermittelt wurden. Bei der Session‐Datei handelt es sich
um eine Textdatei, die auf dem Webserver in einem Ordner für temporäre Dateien abgelegt wird.
Bei der Standardeinstellung der im Buch verwendeten XAMPP‐Installation handelt es sich unter
Windows um das Verzeichnis C:\xampp\tmp. Unter Mac OS befindet sich das entsprechende
Verzeichnis unter /Applications/XAMPP/xamppfiles/temp.

Es handelt sich hierbei um ein serverseitiges Session‐Cookie. Cookie ist die Bezeichnung für die
Textdatei, die Informationen über einen Vorgang sammelt. In jedem Skript, das zur Session gehört,
wird die Session‐ID zur abermaligen Authentifizierung benötigt. Die Übertragung der Session‐ID von
Skript zu Skript wird als Durchschleifen bezeichnet. Das Durchschleifen der Session‐ID ist einfach zu
realisieren, da diese Funktionalität intern von PHP verwaltet wird. Dazu werden die Daten der
Session temporär auf dem Webserver gespeichert. Das Durchschleifen einer Session‐ID findet nur
innerhalb der PHP‐Skripte statt, die eine Session mithilfe der Funktion session_start() fort‐
setzen. Durch Aufruf einer Seite mit der Dateinamenerweiterung *.htm(l) oder einer *.php‐Seite,

auf der session_start() nicht aufgerufen wurde, verlässt der Nutzer also die Session.

Als Gegenstück zum Session‐Cookie speichert der Browser einen Browser‐Cookie mit der Session‐
ID ab. Die Session‐ID wird mit jedem Seitenaufruf an den Server gesendet. Damit wird die kon‐
krete Verknüpfung zwischen Client und Server hergestellt.

Falls Nutzer Cookies im Browser deaktiviert haben, funktionieren Sessions nicht korrekt. Da diese
Einstellung jedoch sehr selten ist bzw. die meisten heutiger Webseiten nur noch mit aktivierten
Cookies und JavaScript funktionieren, wird dieser Sonderfall hier nicht weiter vertieft.

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 185

12.2 Session starten bzw. fortsetzen

Wenn Sie mit einer Session arbeiten wollen, gehen Sie wie folgt vor:

 Alle Dateien, die innerhalb der Session erreichbar sein sollen, müssen korrekte PHP‐Dateien

sein. Die Dateiendung muss *.php, *.php4 oder *.php5 lauten. Welche Dateiendung als PHP‐
Datei erkannt wird, ist in der php.ini konfiguriert.

 Jede dieser Dateien beginnt mit Öffnen eines PHP‐Blocks (<?php) in der ersten Zeile der
Datei, gefolgt von der Funktion session_start(), um eine Session zu starten bzw. eine
laufende Session fortzusetzen. Das gilt auch für Dateien, die ausschließlich HTML‐Tags
enthalten.

Um eine Session zu starten, verwenden Sie die Funktion session_start(). Beim Aufruf des
Programms wird eine Session gestartet und eine eindeutige Session‐ID erzeugt. Auf die Session‐

ID können Sie bei Bedarf mit der Funktion session_id() zugreifen.

Syntax und Bedeutung der Funktion session_start()

 Bei Aufruf der Funktion session_start() wird eine neue
Session begonnen oder eine aktuelle Session wieder aufgenommen.
Ist die vom User übermittelte Session‐ID aktiv, wird diese ID von PHP automatisch erkannt und
damit die bestehende Session fortgeführt. Wird keine Session‐ID erkannt, generiert PHP eine
neue Session‐ID und startet damit eine neue Session.

 Jede Webseite, die zu einer Session gehören soll, muss den Befehl session_start()
beinhalten, ansonsten kann keine Session begonnen bzw. fortgesetzt werden.

 Die Funktion erwartet keine Parameter.

 Rückgabewert der Funktion ist TRUE (bei Erfolg) bzw. FALSE (im Fehlerfall).

Sie müssen session_start()aufrufen, bevor Sie eine Ausgabe im Browser vornehmen.

Eine echo‐Anweisung in PHP oder ein HTML‐Tag vor dem Aufruf dieser Funktion führen zu
einer Fehlermeldung ("header already sent"). Denselben Effekt haben Leerzeichen außerhalb
von PHP‐Blöcken. Auch ein versehentlich eingefügtes Leerzeichen hinter dem schließenden
PHP‐Tag einer inkludierten PHP‐Datei, die vor dem Aufruf von session_start() ein‐
gebunden wird, kann zu dieser Fehlermeldung führen. Um Schwierigkeiten zu vermeiden,
sollten Sie als Erstes ganz oben in der Datei einen PHP‐Block einfügen und danach

session_start() aufrufen.

Standardmäßig lautet der Name der Session PHPSESSID, der in der Datei php.ini definiert ist.
Sie können eine Session zur Laufzeit auch mit einem anderen Namen versehen. Über diesen
Namen können Sie diese Session im späteren Verlauf wieder ansprechen.

Syntax und Bedeutung der Funktion session_name()

 Möchten Sie bei Aufruf einer Webseite einen eigenen
Session‐Namen definieren, rufen Sie die Funktion
session_name() vor dem Starten der Session mit session_start() auf. Damit wird der
Wert der Session mit dem angegebenen Namen erstellt bzw. übernommen. Achtung: Der

Parameter Bezeichnung darf nicht nur aus Zahlen bestehen, sondern muss mindestens einen
Buchstaben enthalten.

session_start();

session_name(Bezeichnung);

Lizenziert für ComCave College GmbH

 12 Sessions

 186 © HERDT‐Verlag

Beispiel start.php

 <?php

 session_start();

 $id = session_id();
 echo "<!DOCTYPE html>";
 echo "<html><head>";
 echo "<meta charset=\"UTF-8\">";
 echo "<title>Start einer Session</title></head>";
 echo "<body>Die Session wurde gestartet.
";
 echo "Session-ID: " . $id;

 echo "
Der Name der Session lautet: " . session_name();

 echo "<p>Weiter zur folgenden
 Seite.</p>";

 echo "</body></html>";

 Mit dem Befehl session_start() wird

eine neue Session gestartet oder eine
gestartete Session fortgesetzt.

 Der Variablen $id wird die aktuelle Session‐ID
zugewiesen.

 Über die Funktion session_name() wird
der Name der aktuellen Session ausgegeben.

 Da hier bereits die komplette HTML‐Ausgabe
geschehen ist und gerade im Zusammenhang
mit Sessions auch die Ausgabe von Leerzeichen

Probleme bereiten können, wird der schließende PHP‐Tag ?> weggelassen. Damit
vermeiden Sie eine versehentliche Ausgabe von Leerzeichen am Dateiende. Die PHP‐Datei
und die Abarbeitung des Skripts enden damit.

12.3 Daten in einer Session speichern

PHP hilft Ihnen bei Start und Betrieb einer Session. Die automatisch angelegte Session‐Datei kann
gewünschte Informationen aufnehmen und für die Dauer der Session verfügbar halten. Das
Speichern von Daten in einer Session hingegen geschieht nicht automatisch, sondern hängt von der
Programmierung ab. Um Daten in der Session‐Datei zu speichern, verwenden Sie die superglobale

Array‐Variable $_SESSION.

Mit dieser Zuweisung erreichen Sie, dass das
Element unter dem Array‐Schlüssel
"benutzer" in die Session‐Datei einge‐
tragen wird. Damit steht es in der Session als Element der Array‐Variablen $_SESSION zur Verfü‐
gung. Am Ende eines PHP‐Skripts werden üblicherweise alle Variablen aus dem Arbeitsspeicher des

Servers gelöscht. So auch die Werte aus $_SESSION. Setzt das als nächstes aufgerufene Skript die
Session fort, werden die Daten aus der Session‐Datei in die Variable $_SESSION eingelesen. Die
Inhalte stehen somit wieder zur Verfügung, nachdem Sie session_start() aufgerufen haben.
Dieser Vorgang wiederholt sich von Skript zu Skript bis zum Ende der Session.

Anzeige der Beispieldatei „start.php“

$_SESSION["Element"] = Wert;
z.B. $_SESSION["benutzer"] = "Max";

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 187

Beispiel: formular.php

In Beispiel wird ein Formular aufgebaut, in das Nutzer ihre Daten eingeben können und das nach
Absenden des Submit‐Buttons weiter verarbeitet wird. Im auswertenden Skript werden diese
Daten an Variablen übergeben, auf die Sie innerhalb einer Session von jeder anderen Seite
zugreifen können.

 <?php

 session_start();
?><!DOCTYPE html>
<html>
 <head><meta charset="UTF-8">
 <title>Formular zur Eingabe der Daten</title></head>
 <body>
 <h1>Session: Angaben zur Person</h1>
 <p>Bitte füllen Sie die nachfolgenden Eingabefelder
 aus: </p>

 <form action="auswertung.php" method="POST">
 <p>Vorname: <input type="text" name="vorname"></p>
 <p>Nachname: <input type="text" name="nachname"></p>
 <p>Wohnort: <input type="text" name="ort"></p>
 <p><input type="submit" value="Abschicken"></p>
 </form>
 </body>
</html>


Eine Session wird initialisiert. In diesem Beispiel

läuft bereits eine Session (falls Sie die Seite von
der Seite start.php aufgerufen haben), also wird
die bestehende Session fortgesetzt. Die Session
muss lückenlos fortgesetzt werden, deshalb
erhält auch die Datei, die nur ein HTML‐
Formular beinhaltet, die Dateinamen‐
erweiterung *.php und initialisiert eine Session.
Da der PHP‐Block zur Initialisierung der Session
notwendig ist, muss es eine PHP‐Datei sein. In
HTML‐Dateien können Sie diesen PHP‐Block
nicht einsetzen.

Ab hier wird ein einfaches Formular aufgebaut.
Als Ziel‐Skript des Formulars wird über das

action‐Attribut die PHP‐Datei
auswertung.php definiert, in der die
Auswertung des Formulars vorgenommen
werden soll.


 Ausgabe der Beispieldatei „formular.php“

Lizenziert für ComCave College GmbH

 12 Sessions

 188 © HERDT‐Verlag

Beispiel: auswertung.php

 <?php

 session_start();
 echo "<!DOCTYPE html><html>";
 echo "<head><meta charset=\"UTF-8\">";
 echo "<title>Daten ins Session speichern</title></head>";
 echo "<body><h1>Daten in der Session speichern</h1>";
 echo "<p>Sie haben folgende Daten im Formular eingetragen:";

 echo "
Vorname: " . $_POST["vorname"];
 echo "
Nachname: " . $_POST["nachname"];
 echo "
Ort: " . $_POST["ort"] . "</p>";

 $_SESSION["vorname"] = $_POST["vorname"];
 $_SESSION["nachname"] = $_POST["nachname"];
 $_SESSION["ort"] = $_POST["ort"];
 $_SESSION["zeit"] = time();
 echo "<p>Folgende Daten sind nun in der Session
 gespeichert: </p>";
 echo "<pre>";

 print_r($_SESSION);
 echo "</pre>";
 echo "<p>Weiter zur folgenden
 Seite.</p></body></html>";

Die laufende Session wird fortgesetzt.

 Die Daten aus dem übermittelten Formular
werden über die Array‐Variable $_POST
ausgegeben.

 In der Array‐Variablen $_SESSION werden die
Einträge mit den Array‐Schlüsseln vorname,
name und ort (Daten aus dem Formular) sowie

zusätzlich die Variable zeit, die den aktuellen
Zeitstempel enthält, gespeichert. Damit werden
die Angaben in der aktuellen Session‐Datei im
Ordner C:\xampp\tmp (Windows) bzw.
/Applications/ XAMPP/xamppfiles/temp (Mac)
gespeichert und für den Zugriff über die Variable

$_SESSION während der gesamten Session
bereitgestellt.

 Zur Überprüfung der in der Session gespeicher‐
ten Variablen wird mithilfe der Funktion

print_r() die Variable $_SESSION
ausgelesen und angezeigt.


Ausgabe der Beispieldatei „auswertung.php“



Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 189

Session‐Datei anzeigen lassen

Session‐Variablen können vom Client nicht manipuliert werden. Nachdem sie erzeugt und
gespeichert wurden, existieren sie nur im Datenspeicher des Servers und können somit nur vom
Skript gelesen werden. PHP liest diese Textdatei am Anfang jeder Session ein. Bei jeder
Wertzuweisung an die Session‐Variable $_SESSION speichert PHP die geänderten oder neu
hinzugekommenen Sessiondaten wieder ab.

 Wechseln Sie unter Windows in den Ordner C:\xampp\temp bzw. /Applications/XAMPP/

xamppfiles/temp unter Mac OS.

 Öffnen Sie die Datei mit der aktuellen Session‐ID mit Notepad++ oder einem einfachen Text‐

editor. Der Dateiname der Session‐Datei besteht aus dem Präfix sess_ , gefolgt von der
Session‐ID (z. B. sess_fam2lg77kt9k26r1ufii3j95u5).

Die Datei hat folgenden Inhalt (in Form eines sogenannten serialisierten Array):

vorname|s:3:"Max";nachname|s:10:"Mustermann";ort|s:12:"Musterhausen";
zeit|i:1464779392;

Die einzelnen Variablen werden nach folgendem Schema abgelegt:

Name|Datentyp[:Länge]:Variablen-Inhalt;

 Anzeige der aktuellen Session‐ID

Session‐Datei mit gespeicherten Daten

12.4 Daten einer Session abrufen

Die gespeicherten Werte einer Session können Sie über den Namen der jeweiligen Variablen

(dem Array‐Schlüssel in $_SESSION) direkt ansprechen bzw. über die Funktion foreach()
komplett auslesen. Da es sich bei der Variablen $_SESSION um eine Array‐Variable handelt,
können Sie alle Funktionen zur Weiterverarbeitung der Daten anwenden, die Sie aus dem Kapitel
Arrays kennen.

Lizenziert für ComCave College GmbH

 12 Sessions

 190 © HERDT‐Verlag

Beispiel: auslesen.php

Die Werte, die Sie im vorigen Beispiel in der Session‐Datei gespeichert haben, möchten Sie auf
einer neuen Seite auslesen. In dem Beispiel werden zwei Möglichkeiten aufgezeigt.

 <?php

 session_start();
?><!DOCTYPE html>
<html>
 <head><meta charset="UTF-8"><title>Auslesen der
 Sessiondaten</title></head>
 <body>
 <h1>Auslesen der Sessiondaten</h1>
 <?php
 echo "<p>Folgende Variablen wurden gespeichert
 ('foreach'):
";

 foreach ($_SESSION as $key => $value) {
 echo $key . ": " . $value . "
";
 }
 echo "<p>Direktes Ansprechen der Variablen:
";

 echo "Vorname aus der Session-Datei: " .
 $_SESSION["vorname"] . "
";
 echo "Nachname aus der Session-Datei: " .
 $_SESSION["nachname"] . "
";
 echo "Ort aus der Session-Datei: " . $_SESSION["ort"] . "
";
 echo "Zeitstempel aus der Session-Datei: " .
 $_SESSION["zeit"] . "</p>";
 echo "<p>Weiter zur folgenden
 Seite.</p>";
 ?>
 </body>
</html>

 Die laufende Session wird fortgesetzt.

 Über die foreach()‐Schleife wird jedes
Element des Arrays $_SESSION ausgelesen.
Mit den Standardvariablen $key und $value
können Sie den Schlüssel und den Wert jeder
Session‐Variablen am Bildschirm anzeigen
lassen.

 Zusätzlich wird jede Variable einzeln anhand des
Namens angesprochen und ausgegeben.

 Anzeige der Beispieldatei „auslesen.php“

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 191

12.5 Sessiondaten und Session löschen

Neben dem Speichern und Auslesen der Daten können Sie diese auch komplett löschen und die
Session beenden. Dies ist z. B. notwendig, wenn in einem Online‐Shop die Bestellung ausgeführt
wurde und somit der Warenkorb des Kunden gelöscht wird.

Löschen der Sessiondaten

Wenn Sie alle Session‐Variablen löschen wollen, also komplett die Inhalte der Array‐Variablen

$_SESSION sowie den Inhalt der Session‐Datei, dann verwenden Sie die folgende Anweisung:

 Mit dieser Anweisung initialisieren Sie die Session‐Variable

neu und leeren damit das vorhandene Array bzw.
Sie ersetzen das bestehende Session‐Array durch ein leeres Array. Die Session läuft nach
dieser Anweisung weiter.

Wollen Sie einzelne Variablen der Session löschen und die restlichen Daten unberührt lassen,
verwenden Sie die Funktion unset():

 Sie geben als Parameter Variable die genaue Bezeichnung der
Variablen an, die Sie löschen möchten.
Beispielsweise möchten Sie die Angabe zum Vornamen aus den vorherigen Beispielen in

diesem Kapitel aus der Session entfernen: unset($_SESSION["vorname"]);

Löschen der Session mit der Funktion session-destroy()
Wenn Sie die komplette Session beenden wollen, reicht es nicht aus, die Sessiondaten zu

löschen. Die Session läuft weiter. Durch Ausführen der Funktion session_destroy() wird
die Session‐Datei gelöscht. Beim nächsten Versuch, Sessiondaten zu speichern, oder beim Ver‐
such, eine Session zu initialisieren, meldet PHP zurück, dass es die dazugehörige Session‐Datei
nicht (mehr) findet. In diesem Fall wird eine neue Session gestartet. Eine neue Session‐ID wird
erzeugt und die dazugehörige Session‐Datei angelegt.

 Mit session_destroy()beenden Sie die aktuelle Session.

Dabei wird die Session‐Datei im Ordner C:\xampp\tmp bzw.
/Applications/XAMPP/xamppfiles/temp gelöscht.

$_SESSION = array();

unset(Variable);

session_destroy();

Lizenziert für ComCave College GmbH

 12 Sessions

 192 © HERDT‐Verlag

Beispiel: session_destroy.php

Die Daten der bisherigen Session sollen gelöscht und anschließend die gesamte Session beendet
werden.

 <?php

 session_start();
?><!DOCTYPE html>
<html>
 <head> <meta charset="UTF-8">
 <title>Sessiondaten und Session löschen</title></head>
 <body>
 <h1>Sessiondaten und Session löschen</h1>
 <?php
 echo "<pre>";

 print_r($_SESSION);
 echo "</pre>";

 unset($_SESSION["vorname"]);
 echo "<pre>";

 print_r($_SESSION);
 echo "</pre>";

 $_SESSION = array();

 print_r($_SESSION);
 echo "<p>Die Session mit der ID " . session_id() .
 " wurde ";

 if (session_destroy()) {
 echo "erfolgreich gelöscht.";
 } else {
 echo "nicht gelöscht.";
 }
 echo "</p>";
 ?>
 </body>
</html>

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 193

 Die aktuelle Session wird fortgesetzt.

 Mit der Funktion print_r() geben Sie zur Kontrolle
die Session‐Variablen mehrmals am Bildschirm aus. Die

Ausgabe des pre‐Tags vor und hinter dem print_r()
dient der zeilenweisen Ausgabe im Browser.

 Mithilfe der Funktion unset() löschen Sie die
angegebene Session‐Variable

($_SESSION["vorname"]). Alle anderen Session‐
Variablen bleiben unberührt. Die Session läuft weiter.

 Indem Sie der Variablen $_SESSION ein leeres Array
zuweisen, löschen Sie alle Session‐Variablen.

 Danach löschen Sie die Session‐Datei und damit die
Session. Die Funktion session_destroy() liefert
einen Wert zurück, und zwar TRUE, wenn der
Löschvorgang erfolgreich war, ansonsten FALSE. Über
eine if‐Abfrage generieren Sie eine entsprechende
Ausgabe.

12.6 Fallbeispiel „Shop“

Sie haben in den vorigen Abschnitten die grundlegenden Funktionen rund um Sessions kennen‐
gelernt. Die bisherigen Beispiele waren allerdings linear aufgebaut. In typischen Anwendungs‐
beispielen von Sessions wie z. B. Shops werden Sie jedoch mit weiteren Problemen konfrontiert:

 Sie arbeiten in der Regel innerhalb einer Session mit mehreren Formularen und müssen

achtgeben, dass sich in der Session gespeicherte Daten der einzelnen Formulare nicht
gegenseitig überschreiben.

 Sie rufen ein Formular eventuell mehrfach auf. Im Idealfall sind bestellte Artikelmengen
eingetragen und Sie können jederzeit weitere Artikel bestellen oder Bestellmengen verändern.

 Sie können die Seiten beliebig innerhalb der Session wechseln. Daten dürfen dabei nicht
verloren gehen.

Beschreibung des Fallbeispiels

Um die genannten Sachverhalte abzubilden, zeigt das Fallbeispiel einen kleinen Shop mit zwei
Formularen (= Artikelgruppen), über welche Sie Artikel bestellen können. Sie können jederzeit zum
Warenkorb sowie auf die einzelnen Formularseiten wechseln. Um den Bestellvorgang zu beenden,
geben Sie auf einer abschließenden Seite Ihre persönlichen Daten ein. Die Daten zur Bestellung
werden ausgegeben und in einer *.csv‐Datei gespeichert. Danach wird die Session beendet.

Das Fallbeispiel ist möglichst einfach gehalten. Aus Gründen der Übersichtlichkeit und Nachvoll‐
ziehbarkeit wurden weder ein ansprechendes Layout noch zusätzliche Funktionen programmiert.

Das Shopbeispiel besteht aus folgenden Dateien:

Ausgabe der Beispieldatei
„session_destroy.php“

Lizenziert für ComCave College GmbH

 12 Sessions

 194 © HERDT‐Verlag

Dateiname Kurzbeschreibung

fallbeispiel_start.php Startseite des Shops, mit Links auf die Formulare zur Bestellung
von Schokolade und Pralinen

fallbeispiel_artikel.inc.php Include‐Datei, in der die verwendeten Artikel in Array‐Variablen
zur Verfügung gestellt werden

fallbeispiel_form‐schoko.php

fallbeispiel_form‐praline.php

Formulardateien zur Bestellung von Artikeln. Pro Artikelgruppe
wird eine separate Formulardatei verwendet.

fallbeispiel_warenkorb.php Zentrale Auswertungsdatei für die übermittelten Daten aus den
Formularen und dem Warenkorb

fallbeispiel_kasse.php Datei zum Abschließen des Bestellvorgangs, Eingabe
persönlicher Daten, Speichern der Bestellung in einer externen
Datei und Beenden der Session

Beispiel: fallbeispiel_start.php

Die Startseite des Fallbeispiels verlinkt auf
die Formulare im Shop. Die Datei trägt die
Dateinamenerweiterung *.php, die Session

wird über die Funktion session_start()
initialisiert. Beachten Sie, dass eine Session
gestartet wird, obwohl die Datei abgesehen
von der Initialisierung der Session aus‐
schließlich aus HTML‐Elementen besteht.

Beispiel: fallbeispiel_artikel.inc.php

In der Include‐Datei werden in Array‐Variablen die Artikelnummern und Artikelbezeichnungen
definiert. In der Praxis werden diese Angaben in der Regel aus Datenbanken oder vergleichbaren
Quellen ausgelesen und über entsprechende Variablen zur Verfügung gestellt.

 <?php

 $array_schoko = array("s-1" => "Weiße Schokolade",
 "s-2" => "Vollmilch-Schokolade",
 "s-3" => "Bio-Vollmilch-Schokolade",
 "s-4" => "Zartbitter-Schokolade");

 $array_praline = array("p-1" => "Marzipan-Pralinen",
 "p-2" => "Mokka-Pralinen",
 "p-3" => "Nougat-Pralinen",
 "p-4" => "Walnuss-Pralinen");

Ausgabe der Startseite des Fallbeispiels
„fallbeispiel_start.php“

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 195

Die Variable $array_schoko wird als Array‐Variable definiert. Gespeichert wird ein
assoziatives Array mit Angaben zu Artikelnummern (Schlüssel) und Artikelbezeichnungen
(Werte). Analog dazu wird für jede weitere Artikelgruppe eine weitere Array‐Variable nach
gleichem Muster angelegt. Gerade bei inkludierten Dateien können Leerzeichen am Ende

der Datei zu Problemen führen. Auf den schließenden PHP‐Tag ?> wird deswegen in dieser
Datei auch verzichtet.

Beispiel: fallbeispiel_form‐schoko.php (fallbeispiel_form‐praline.php)

Die beiden Formulare sind nach dem gleichen Muster aufgebaut. Die Artikel werden aus der Datei
fallbeispiel_artikel.inc.php eingelesen. Der Benutzer kann für die Artikel die gewünschten Bestell‐
mengen eingeben. Bei nochmaligem Aufruf der Formulardatei wird eine eventuell früher einge‐
tragene Bestellmenge aus der Session‐Variablen ausgelesen und angezeigt. In diesem Beispiel

können Sie durch Eingabe des Wertes 0 bei der Bestellmenge den Artikel aus der Session löschen.

 <?php

 session_start();

 include("fallbeispiel_artikel.inc.php");
?><!DOCTYPE html>
<html>
 <head><meta charset="UTF-8">
 <title>Schokolade-Bestellformular</title></head>
 <body>
 <h1>Fallbeispiel "Shop": Formular 1 - Schokolade</h1>
 <p>Bestellung: Schokolade - tragen Sie die gewünschte Menge ein.</p>

 <form action="fallbeispiel_warenkorb.php" method="POST">
 <table border="1" bgcolor="#D5F0F5">
 <tr><th>Art.-
 Nr.</th><th>Artikel</th><th>Menge</th><th>Einheit</th></tr>
 <?php

 foreach ($array_schoko as $key => $value) {
 echo "<tr><td align='center'>$key</td><td>$value</td>";

 echo "<td><input type='text' name='$key' value='" .
 (isset($_SESSION[$key]) ? $_SESSION[$key] : '0')
 . "' size='5' style='text-align:right'>";
 echo "</td><td>Tafel (100g)</td></tr>";
 }
 ?>
 <tr>
 <td colspan="4">

 <input type="submit" name="schoko" value="In den Warenkorb">

 <input type="submit" name="abbruch" value="Abbrechen">
 </td>
 </tr>
 </table></form></body></html>

Durch Angabe von session_start() wird eine Session gestartet bzw. eine bestehende

Session fortgesetzt.

 Mithilfe der Funktion include() wird die Datei fallbeispiel_artikel.inc.php eingebunden,
die Informationen zum Warenbestand enthält.

Lizenziert für ComCave College GmbH

 12 Sessions

 196 © HERDT‐Verlag

 Die Datei fallbeispiel_warenkorb.php wird als Ziel‐Skript des Formulars und damit zur Aus‐
wertung der Eingaben definiert.

 In einer foreach‐Schleife wird das Array der Artikel der gewünschten Warengruppe aus‐
gelesen. Schlüssel und Wert werden flexibel in einer Tabelle dargestellt. In der Schleife wird
pro Artikel auch ein Eingabefeld generiert, in das der Benutzer die Bestellmenge eingibt.

 Durch das Attribut value des input‐
Elements wird die Vorbelegung gesetzt,
die davon abhängt, ob bereits im Laufe
der Session eine Bestellmenge für
diesen Artikel ausgewählt wurde. Falls
ja, wird der vorhandene Wert aus der
Session ausgelesen, falls nicht wird der

Wert 0 eingetragen. Zu diesem Zweck
wird im Beispiel die Kurzschreibweise

der if-else‐Anweisung – der ternäre
Operator – verwendet.

 Die Submit‐Schaltfläche namens

schoko sorgt dafür, dass das Formular
abgesendet wird. In dem Fall werden
die eingegebenen Mengen aus dem
Formular in der Session gespeichert.

 Eine zweite Submit‐Schaltfläche
(abbruch) übergibt ebenfalls das
Formular. In der auswertenden Datei
werden dann allerdings keine
Eingaben verarbeitet.

Beispiel: fallbeispiel_warenkorb.php

Die Auswertung der Formulareingaben der beiden Bestellformulare erfolgt in einer einzigen

Datei, der Datei fallbeispiel_warenkorb.php. Durch eine if‐Anweisung wird geprüft, aus wel‐
chem Formular Daten übergeben wurden. Die Daten werden in die Session‐Datei übernommen,
ohne dass bereits vorhandene Daten anderer Formulare beeinflusst werden. Das Skript dient
einem weiteren Zweck, nämlich der Anzeige des Warenkorbs. In der Datei sind Verlinkungen auf
alle anderen Dateien innerhalb des Shops enthalten.

 <?php

 session_start();

 include("fallbeispiel_artikel.inc.php");
?><!DOCTYPE html>
<html>
 <head><meta charset="UTF-8">
 <title>Ihr Warenkorb</title></head>
 <body>
 <h1>Ihr Warenkorb</h1>
 <?php

 if (isset($_POST["schoko"]) or isset($_POST["praline"])) {

Anzeige der Beispieldatei „fallbeispiel_form‐ schoko.php“
mit einigen Beispieldaten

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 197

 foreach ($_POST as $key => $value) {
 if ($value >= 1) {
 $_SESSION[$key] = intval($value);
 } else {
 if (isset($_SESSION[$key])) {

 unset($_SESSION[$key]);
 }
 }
 }
 }
 echo "<table border='1'>
 <tr><th>Art.-Nr.</th><th>Artikel</th>
 <th>Menge</th></tr>";

 foreach ($_SESSION as $key => $value) {

 if (substr($key, 0, 1) == "s") {
 echo "<tr><td>$key</td><td>$array_schoko[$key]</td>
 <td>$value</td></tr>";
 }

 if (substr($key, 0, 1) == "p") {
 echo "<tr><td>$key</td><td>$array_praline[$key]</td>
 <td>$value</td></tr>";
 }
 }
 echo "</table>";
 ?>
 <p>Was möchten Sie tun?</p>

 Schokolade
 bestellen
 Pralinen
 bestellen
 Bestellung
 abschließen

 </body></html>


Durch Angabe von session_start() wird eine Session gestartet bzw. eine bestehende

Session fortgesetzt.

 Mithilfe der Funktion include() wird die Datei fallbeispiel_artikel.inc.php eingebunden,
welche Informationen zum Warenbestand enthält.

 Es wird geprüft, ob die Variable $_POST["schoko"] oder die Variable
$_POST["praline"] vorhanden ist. Das ist nur dann der Fall, wenn Daten aus einer der
Formulardateien zur Auswertung versendet wurden. Je nachdem, ob Sie vom Formular für
Pralinen‐ oder von dem für Schokoladenbestellung zu diesem Skript gelangt sind, werden nur
die dort vorgenommen Eintragungen in der Session gespeichert. Durch dieses Vorgehen kön‐
nen sich Daten aus verschiedenen Formularen nicht gegenseitig überschreiben.

Lizenziert für ComCave College GmbH

 12 Sessions

 198 © HERDT‐Verlag

 Über eine foreach‐Schleife werden alle
Formulardaten ($_POST) der $_SESSION‐
Variablen zugewiesen. Die Artikelnummer bildet

den Schlüssel ($key), die vom Benutzer einge‐

gebene Bestellmenge den Wert ($value). Es wird
abgefragt, ob mindestens der Wert 1 bei der
Bestellmenge eingegeben wurde. Damit scheiden

Zeichenketten aus, da sie den Zahlenwert 0
besitzen. Auf den Wert $value wird die Funktion
intval() angewendet. Diese Funktion wandelt
alle übergebenen Werte in einen integer um.
Damit fangen Sie falsche Eingaben ab und stellen
sicher, dass Sie ausschließlich Ganzzahlen als
sinnvolle Bestellwerte haben. Der Wert wird in der
Session gespeichert.

 Im else‐Zweig wird die Variable für diesen Artikel
– sofern in der Session vorhanden – aus der Session‐

Datei gelöscht. Ein Eintrag von 0 im Bestellformular
löscht den betreffenden Eintrag wieder aus der
Session, da die Prüfung in der if‐Anweisung durch
$value >= 1 die Eingabe 0 nicht besteht und
damit der else‐Zweig ausgeführt wird.

 Analog zur foreach‐Schleife zum Einlesen der Formulardaten  erfolgt hier das Einlesen
der Sessiondaten, um den aktuellen Warenkorb darstellen zu können.

 Zur Darstellung der einzelnen Warengruppen ist neben der in der Session‐Datei gespeicher‐
ten Angabe zur Artikelnummer das Auslesen der Artikelbezeichnung geplant. Aus diesem

Grund wird über die Funktion substr($key, 0, 1) der erste Buchstabe der Artikel‐
nummer ausgelesen. In diesem Beispiel sind nur die Werte s (Schokolade) oder p (Praline)
möglich. Abhängig davon werden die Artikelbezeichnungen aus den Artikel‐Array‐Variablen
entnommen.

Beispiel: fallbeispiel_kasse.php

Die Bestellung soll abgeschlossen werden. Der Benutzer gibt zu diesem Zweck seine persönlichen
Daten ein (in diesem Beispiel nur Vorname, Name und Ort). Danach werden die kompletten
Bestelldaten am Bildschirm angezeigt und in einer *.csv‐Datei zur Weiterverarbeitung mit Excel

gespeichert. Danach wird der Inhalt der Sessionvariablen $_SESSION und abschließend die
komplette Session gelöscht.

 <?php

 session_start();

 include("fallbeispiel_artikel.inc.php");
?><!DOCTYPE html><html>
 <head><meta charset="UTF-8"><title>Kasse</title></head>
 <body>
 <h1>Fallbeispiel "Shop": Bestellung abschließen</h1>
 <?php

 if (isset($_POST["absenden"])) {

Anzeige des Warenkorbs im Fallbeispiel
(Datei „fallbeispiel_warenkorb.php“)

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 199

 $vorname = $_POST["vorname"];
 $nachname = $_POST["nachname"];
 $ort = $_POST["ort"];
 echo "<p>Sie haben folgende Bestellung
 übermittelt:</p>";
 echo "<p>$vorname $nachname aus
 $ort</p>";
 echo "<table border='1'><tr><th>Art.-Nr.</th>
 <th>Artikel</th><th>Menge</th></tr>";

 $bestellung = "Art.-Nr.;Artikel;Menge\n";

 foreach ($_SESSION as $key => $value) {
 if (substr($key, 0, 1) == "s") {
 echo "<tr><td>$key</td><td>$array_schoko[$key]</td>
 <td>$value</td></tr>";
 $bestellung .= "$key;$array_schoko[$key];$value\n";
 }
 if (substr($key, 0, 1) == "p") {
 echo "<tr><td>$key</td><td>$array_praline[$key]</td>
 <td>$value</td></tr>";
 $bestellung .= "$key;$array_praline[$key];$value\n";
 }
 }
 $bestellung .=
 "\nbestelltvon\n$vorname;$nachname;$ort\n\n";
 echo "</table><p>Vielen Dank! Die Session wird
 beendet.</p>";

 if (file_put_contents("bestellung.csv", $bestellung,
 FILE_APPEND)) {
 echo "<p>Die Bestelldaten wurden in der Datei
 bestellung.csv gespeichert</p>";
 }

 $_SESSION = array();
 session_destroy();

 } else {
 ?>
 <p>Bitte füllen Sie die nachfolgenden Eingabefelder
 aus: </p>

 <form action="<?php echo $_SERVER["PHP_SELF"]; ?>"
 method="POST">
 <p>Vorname: <input type="text" name="vorname"></p>
 <p>Nachname: <input type="text" name="nachname"></p>
 <p>Wohnort: <input type="text" name="ort"></p>
 <p><input type="submit" name="absenden"
 value="Absenden und Bestellung abschließen"></p>
 </form>
 <?php
 }
 ?>
 </body></html>

Lizenziert für ComCave College GmbH

 12 Sessions

 200 © HERDT‐Verlag

Durch Angabe von session_start() wird eine Session gestartet bzw. eine bestehende
Session fortgesetzt.

 Mithilfe der Funktion include() wird die Datei fallbeispiel_artikel.inc.php eingebunden,
die Informationen zum Warenbestand enthält.

 Zum Abschluss der Bestellung steht in dieser Datei das Formular zur Eingabe persönlicher

Daten zur Verfügung . Mithilfe von isset($_POST["absenden"] wird geprüft, ob
das Formular bereits ausgefüllt wurde. Das Formular wird nur angezeigt, wenn es noch nicht
abgesendet wurde .

 Die Formulardaten werden zur einfachen Verwendung in den Variablen $vorname,
$nachname und $ort gespeichert.

 Die Variable $bestellung wird definiert und nach und nach mit Inhalt gefüllt. Die
Variable beinhaltet später alle Bestelldaten.

 Auch in diesem Skript erfolgten das Auslesen der Sessiondaten und die Darstellung des
Warenkorb‐Inhalts auf dem Bildschirm.

 Die Variable $bestellung wird mithilfe der Funktion file_put_contents() in die
Datei bestellung.csv im selben Ordner gespeichert. Die Daten werden an eventuell
bestehende Daten angehängt. Im Erfolgsfall wird eine entsprechende Meldung auf dem
Bildschirm ausgegeben.

 Schließlich wird die Variable $_SESSION geleert und die komplette Session gelöscht.

Anzeige der Beispieldatei „fallbeispiel_kasse.php“ bei Eintrag persönlicher Daten (links) und bei Ende
des Bestellvorgangs (rechts)

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 201

Zusätzlich wurden die Daten in der Datei bestellung.csv zur Weiterverarbeitung, z. B. durch Excel,
gespeichert:

Art.-Nr.;Artikel;Menge
s-1;Weiße Schokolade;5
s-4;Zartbitter-Schokolade;3
p-1;Marzipan-Pralinen;2
p-2;Mokka-Pralinen;1
p-4;Walnuss-Pralinen;12

bestellt von
Max;Mustermann;Musterhausen

Inhalt der Datei „bestellung.csv“ nach Ausführung einer Beispielbestellung

Lizenziert für ComCave College GmbH

 12 Sessions

 202 © HERDT‐Verlag

12.7 Übung

Einen einfachen Shop erstellen

Level

Zeit ca. 30 min

Übungsinhalte  Arbeiten mit HTML‐Formularen

 Daten in einer Session speichern und wiederverwenden

 Verwenden von Session‐Funktionen

Übungsdatei ‐‐

Ergebnisdateien u_formular.php, u_bestellung.php, u_abschluss.php

1. Erstellen Sie ein Bestellformular zur Bestellung von

Honig (u_formular.php). Starten Sie mit dieser Datei
eine Session. Die in das Bestellformular einge‐
gebenen Daten sollen an die Datei u_bestellung.php
übergeben werden.

2. Speichern Sie in der Datei u_bestellung.php die Daten

aus dem Formular in der Session und lassen Sie die
Sessiondaten inklusive Session‐ID anzeigen.

Übungsdatei „u_formular.php“

Anzeige der Übungsdatei
„u_bestellung.php“

Lizenziert für ComCave College GmbH

Sessions 12

 © HERDT‐Verlag 203

3. Verlinken Sie auf eine weitere Datei innerhalb der
Session (u_abschluss.php), in der in einem Formular
Angaben zu Name, Wohnort und Mailadresse
gemacht werden können.

4. Lesen Sie anschließend nach Absenden des Formulars

in derselben Datei die kompletten Sessiondaten über
eine Schleife aus und geben Sie sie am Bildschirm aus.
Abschließend sollen die Session‐Variable geleert und
die Session beendet werden.

5. Zusatzaufgabe: Schauen Sie sich das Fallbeispiel auf den vorherigen Seiten genau an und

überlegen Sie, welche Anpassungen Sie vornehmen können, z. B. Layout, andere oder
weitere Artikel, Erweitern des Beispiels um Preisangaben und ‐berechnungen. Setzen Sie
eine Ihrer Ideen auf der Basis der vorliegenden Dateien um.

Anzeige der Übungsdatei
„u_abschluss.php“ zur Eingabe
persönlicher Daten

Anzeige der Zusammenfassung der
Sessiondaten

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 204 © HERDT‐Verlag

13
13. Grundlagen Datenbank MySQL

Beispieldateien: Dateien aus Ordner Kap13

13.1 Die Datenbanken MySQL und MariaDB

PHP unterstützt die Arbeit mit verschiedenen Datenbankmanagementsystemen. Dabei wird PHP
häufig in einem Atemzug mit MySQL genannt. In der Vergangenheit galt die Kombination der
Programmiersprache PHP mit der MySQL‐Datenbank als am weitesten verbreitet auf den
Webservern weltweit.

Allerdings gibt es aktuell einen Wandel: Da Oracle mittlerweile die Markenrechte an MySQL
besitzt, wird befürchtet, dass MySQL irgendwann nicht mehr frei nutzbar sein könnte oder die
Weiterentwicklung eingestellt wird. Mit dem Einsatz der Datenbank MariaDB wurde eine sichere
Alternative geschaffen. MariaDB ist durch eine Abspaltung von MySQL entstanden, was eine
hohe Kompatibilität der beiden Datenbanken nach sich zieht. Vor allem steht MariaDB unter der
GNU General Public License. Das bedeutet, diese Datenbank ist auch in der Zukunft frei von
Markenrechten. Die Gefahr, dass die Datenbank kostenpflichtig wird, ist nicht gegeben.

Der XAMPP‐Webserver verwendet seit Ende 2015 statt MySQL das Datenbanksystem MariaDB.
Im Sprachgebrauch wird zumeist von MySQL gesprochen, auch wenn PHP‐Entwickler mit einer
MariaDB‐Datenbank arbeiten. Auch die Nutzungsoberfläche phpMyAdmin und das XAMMP
Control Panel verwenden die Bezeichnung MySQL. Der Zugriff auf eine MariaDB‐Datenbank
geschieht ebenfalls über die herkömmlichen MySQL‐Funktionen. Von daher wird in diesem
Buch ebenfalls von MySQL gesprochen, wobei stets auch MariaDB gemeint ist.

13.2 MySQL‐Datenbanken mit phpMyAdmin verwalten

In dem für dieses Buch eingesetzten Webserver‐Paket XAMPP (Version 7.0.5) sind das Datenbank‐
managementsystem MariaDB, Version 10.1.13, und phpMyAdmin, Version 4.5.1, enthalten.

Der XAMPP‐Webserver wird regelmäßig auf neue PHP‐, MySQL‐ bzw. MariaDB‐ und phpMyAdmin‐
Versionen aktualisiert (nicht jede neue Version einer Software wird integriert, einzelne Versionen
von PHP bzw. MySQL werden mitunter übersprungen). So werden Sie in Zukunft XAMPP‐
Installationspakete finden, welche neuere Versionen der einzelnen Komponenten berücksichtigen.
Diese können im Detail (Layout, Funktionen), besonders in Bezug auf phpMyAdmin, von der in
diesem Buch verwendeten Version abweichen.

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 205

MySQL

XAMPP Control Panel: Schaltzentrale zum Starten und Beenden der Komponenten. Die Modulnamen
Apache und MySQL sind hellgrün hinterlegt, wenn die Server laufen (Windows) bzw. durch grüne Symbole
im manager‐osx markiert (Mac OS, siehe Anhang).

MySQL und MariaDB sind Datenbankmanagementsysteme, die weitgehend den SQL‐Standard
unterstützen. Mithilfe von SQL‐Anweisungen werden Datenbanken, Tabellen und die darin
enthaltenen Datensätze sowie Benutzer und ihre Berechtigungen verwaltet.

Zur Verwaltung von MySQL‐ und MariaDB‐Datenbanken wird häufig die Bedienoberfläche
phpMyAdmin verwendet. Beide Komponenten (MariaDB und phpMyAdmin) werden bei der
Installation von XAMPP mit eingerichtet. Achten Sie im XAMPP Control Panel darauf, dass der
Apache‐Webserver und der MySQL‐Server gestartet sind. Nur dann können Sie mit PHP und der
Datenbank arbeiten. Falls das nicht der Fall sein sollte, starten Sie beide Komponenten über
einen Klick auf die jeweils nebenstehende Schaltfläche Start.

Über die Checkboxen am linken Rand können Sie die Server als Dienste aktivieren, sodass
diese beim Start des Rechners automatisch gestartet werden und das händische Starten
überflüssig wird. Unter Windows kann es abhängig von der Benutzerkontensteuerung sein,
dass Sie die grünen Häkchen im Control‐Panel nicht sehen und auch nicht bedienen können.
In diesem Fall deaktivieren Sie die Benutzerkontensteuerung oder nutzen den Rechner als
Administrator.

PHP ist nicht auf MySQL beschränkt, sondern kann auch mit anderen Datenbanken arbeiten. Für
verschiedene Datenbanken bietet PHP eigene Datenbankfunktionen an (z. B. für PostgreSQL oder
SQLite). Alternativ kann über eine Abstraktionsschicht auf verschiedene Datenbanken zugegriffen
werden (z. B über PHP Data Objects, kurz PDO). Die Interaktionen zwischen PHP und den
unterschiedlichen Datenbanken sind aber prinzipiell vergleichbar. In diesem Buch wird anhand
von MySQL und mithilfe von phpMyAdmin das Arbeiten mit Datenbanken vorgestellt.

phpMyAdmin

Bei phpMyAdmin handelt es sich um eine in PHP geschriebene Open‐Source‐Web‐Applikation,
also eine Sammlung von PHP‐Skripten, mit der Sie MySQL‐Datenbanken über eine grafische
Weboberfläche verwalten können. phpMyAdmin wird hauptsächlich zur Verwaltung von MySQL‐
Datenbanken auf Webservern verwendet, auf denen die einzelnen Kunden keine Rechte haben,
die von MySQL zur Verfügung gestellten Kommandozeilen‐Verwaltungstools direkt auszuführen.
Die meisten Internetprovider bieten phpMyAdmin als Standardtool für die Administration von
MySQL‐Datenbanken an.

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 206 © HERDT‐Verlag

phpMyAdmin ermöglicht Ihnen folgende Aktionen:

 Erstellen und Löschen von Datenbanken

 Erstellen, Kopieren, Löschen und Ändern von Tabellen

 Hinzufügen, Löschen und Ändern von Datensätzen

 Ausführen von SQL‐Anweisungen

 Anzeigen der Datensätze in den Tabellen

 Laden von Textdaten in Tabellen

 Exportieren von Daten in unterschiedliche Formate, beispielsweise in CSV‐ oder SQL‐Dateien

 Importieren von Daten

 Administrieren verschiedener Server und einzelner Datenbanken

 Verwaltung von MySQL‐Benutzern

Die Startseite von phpMyAdmin rufen Sie über die Navigation der XAMPP‐Oberfläche auf, die Sie
über die Eingabe von http://localhost im Browser erreichen. Alternativ können Sie die direkte
URL http://localhost/phpmyadmin/ aufrufen.

Startseite von phpMyAdmin

Über diese Oberfläche können die verschiedenen MySQL‐Befehle per Hyperlink, Schaltflächen
oder über Eingabefelder ausgeführt werden. Auf der linken Seite finden Sie die Auflistung aller
vorhandenen Datenbanken des MySQL‐Servers . Mit der Auswahl einer Datenbank öffnen Sie
die entsprechenden Tabellen. Im rechten Hauptbildschirm  werden die einzelnen Funktionen
als Eingabefelder und Schaltflächen angeboten. Auf der Startseite können Sie die Sprache aus‐
wählen, die von phpMyAdmin verwendet werden soll. Hier können Sie auch zum Layout
vorheriger Versionen wechseln .







Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 207

13.3 MySQL‐Datenbanken mit phpMyAdmin erstellen

Neue Datenbanken in MySQL anlegen

 Um eine neue Datenbank zu
erzeugen, wählen Sie in der
oberen Navigation den Bereich
Datenbanken aus und geben in
das Eingabefeld Neue Datenbank
anlegen den Namen, hier z. B.

obstladen, für die neue
Datenbank ein und klicken Sie auf
die Schaltfläche Anlegen.

 Der Zeichensatz (Kollation) legt den Default‐Schriftzeichensatz für die Datenbank fest. Dieser
beeinflusst, wie später Datensätze sortiert werden. Auch die einzelnen Tabellen können

jeweils mit einer bestimmten Kollation angelegt werden. Da seit der Version PHP 5.4 UTF-8
als Standardzeichensatz festgelegt ist, empfiehlt es sich auch hier, den Zeichensatz
utf8_general_ci auszuwählen.

Tabellen erstellen

Haben Sie eine neue Datenbank erstellt, erkennt phpMyAdmin, dass die neue Datenbank noch
keine Tabellen enthält. Es wird Ihnen ein Formular angezeigt, über welches Sie neue Tabellen
erstellen können.

 Tragen Sie in das Eingabefeld Name  den

Tabellennamen bestellung und in das
Eingabefeld Anzahl der Felder  die
Anzahl der Felder – nämlich "6" – ein, die
in der Tabelle erstellt werden sollen.

 Betätigen Sie die Schaltfläche OK .

Felder erstellen

Es öffnet sich ein neues Fenster im Webbrowser, in dem die von Ihnen angegebene Anzahl an
Feldern angezeigt wird.

 Tragen Sie in die vorhandenen Eingabefelder gemäß folgender Abbildung die entsprechenden

Werte ein.

 Als Feldnamen verwenden Sie id, vorname, nachname, ort, sorte und menge. Für die
Felder id und menge belassen Sie die Vorauswahl unter Typ auf INT. Für die anderen Felder
wählen Sie den Typ VARCHAR.

 Die Längen für die VARCHAR‐Felder legen Sie jeweils mit 50 Zeichen fest bzw. 20 Zeichen für

sorte.

 Wählen Sie in der Zeile des Felds id unter Index die Option PRIMARY aus.

 Aktivieren Sie in gleicher Zeile die Checkbox unter A_I.

Neue Datenbank anlegen

Neue Tabelle mithilfe von phpMyAdmin erstellen

 



Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 208 © HERDT‐Verlag

Der Aufbau der Beispieltabelle ist nur exemplarisch. Angaben wie Straße, PLZ, Mailadresse
etc. fehlen. Außerdem würde sich u. a. für eine reale Datenbank zur Vermeidung redundanter
Daten die Teilung in Kundentabelle und Bestelltabelle anbieten. Auch das Vorhandensein der
möglichen Nullwerte soll die Arbeit mit diesem Beispiel vereinfachen.

Datentypen zuweisen

In den Feldern können Sie folgende Eintragungen bzw. Einstellungen vornehmen. Für das Beispiel
sind folgende Felder zu beachten:

Feld Beschreibung Parameter in SQL‐Syntax

Name Tragen Sie in dieses Eingabefeld den Feldnamen ein. <Feldname>

Typ Aus dieser Selectbox wählen Sie den Datentyp des Fel‐
des aus. Im Beispiel werden aus einer Vielzahl möglicher
Datentypen nur die Typen INT (Ganzzahl) und VARCHAR
(various characters, beliebiger Text) verwendet.

<Datentyp>

Länge/
Werte

In dieses Eingabefeld tragen Sie die maximale Länge des
Datenfeldinhaltes ein.

(AnzahlZeichen)

Standard Wählen Sie hier den Standardwert aus, der dem Feld
zugewiesen werden soll, wenn das Feld bei der Daten‐
eingabe keinen Wert erhält.

DEFAULT '<Wert>'

Null Wenn das Feld beim Eintragen eines Datensatzes leer
bleiben darf, wird das Häkchen gesetzt, anderenfalls
wird eine Eingabe für das Feld erwartet.

NULL oder NOT NULL

Index Die Selectbox bietet u. a. die Einträge Primary und
Unique zur Festlegung eines Feldes als Primärschlüssel
bzw. als Feld, das eindeutige Werte enthalten muss.

PRIMARY, UNIQUE

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 209

Feld Beschreibung Parameter in SQL‐Syntax

A_I Über diese Checkbox können Sie den Wert
auto_increment einem ganzzahligen Datenbankfeld
zuweisen. Beim Einfügen eines neuen Datensatzes in die

Tabelle wird der Wert des mit auto_increment
gekennzeichneten Feldes automatisch durch MySQL um
eins erhöht (inkrementiert). Innerhalb der Tabelle darf
nur ein Feld mit diesem Attribut versehen werden, dieses
Feld ist automatisch der Primärschlüssel der Tabelle.

AUTO_INCREMENT

Primärschlüssel anlegen

Um ein Feld als Primärschlüssel zu definieren, wählen Sie im Feld Index die entsprechende Option
aus. Beachten Sie bei der Zuweisung des Primärschlüssels, dass innerhalb einer Tabelle …

 nur ein Primärschlüssel zugewiesen werden darf;

 das Feld, dem der Primärschlüssel zugewiesen wird, nicht als Null‐Feld definiert werden darf;

 das Feld, dem der Primärschlüssel zugewiesen wird, eindeutige Werte enthalten muss (kein
Wert darf mehrfach vorhanden sein. Beim Versuch, denselben Wert mehrfach einzufügen,
reagiert MySQL mit einer Fehlermeldung).

Pro Tabelle gibt es maximal einen Primärschlüssel. Die Einstellung Unique können Sie mehrfach
definieren. Felder, die als Unique definiert werden, können ebenfalls nur einmal mit demselben
Wert gefüllt werden. Auch hier reagiert MySQL mit einer Fehlermeldung, falls ein Wert für ein
Unique‐Feld bereits vorhanden ist und Sie diesen noch einmal eintragen möchten.

Sollten Sie in einer Tabelle kein Feld mit eindeutigen Werten haben, wird empfohlen, wie im
Beispiel ein zusätzliches Feld mit einer automatisch generierten laufenden Nummerierung (Auto‐
Inkrement‐Wert) hinzuzufügen, das als Primärschlüssel dient.

Tabelle speichern

 Betätigen Sie die Schaltfläche Speichern, um die Tabelle zu speichern.

Neue Tabelle in vorhandener Datenbank erstellen

Wollen Sie in einer vorhandenen Datenbank eine neue Tabelle erstellen, wählen Sie in der linken
phpMyAdmin‐Navigation die Tabelle aus. Unter der Übersicht der vorhandenen Tabellen finden
Sie oben beschriebenes Formular zum Anlegen von Tabellen

 Stellen Sie sicher, dass Sie sich nach dem Erstellen einer neuen Datenbank im Register

Struktur befinden.
 oder Klicken Sie im Startbildschirm von phpMyAdmin auf den Eintrag Datenbanken und in

der Übersicht der vorhandenen Datenbanken auf den Namen der Datenbank, in der
Sie eine Tabelle erstellen wollen.

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 210 © HERDT‐Verlag

Beispiel: Datenbank obstladen

Tabelle „bestellung“ in der Datenbank „obstladen“ in phpMyAdmin

Tabellenstruktur verändern

Die Tabellenstruktur können Sie im Nachhinein ändern, beispielsweise mit den Hyperlinks
Bearbeiten oder Löschen. Diese Hyperlinks befinden sich in der Spalte Aktion neben den Feld‐
namen in der Tabellenstrukturansicht und sind in phpMyAdmin mit sprechenden Links versehen,
die auf die möglichen Optionen hinweisen:

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 211

Neben dem Verändern der Tabellenstruktur haben Sie auch die Möglichkeit, neue Felder hinzu‐
zufügen. Unterhalb der Strukturübersicht der Tabelle finden Sie folgendes Formular:

Um neue Datenfelder zur bestehenden Tabelle hinzuzufügen, geben Sie die Anzahl der neuen
Felder ein und wählen Sie aus, an welcher Position innerhalb der Tabelle die neuen Felder erstellt
werden sollen.

Im HERDT‐Buch PHP ‐ Fortgeschrittene Techniken der Web‐Programmierung wird das Thema PHP
und MySQL vertiefend behandelt. Sie finden dort sowohl ausführliche Informationen zu
phpMyAdmin als auch einen Kurzüberblick über die wichtigsten SQL‐Befehle sowie Tipps zu
fortgeschrittenen Techniken rund um PHP und MySQL.

13.4 Mit einer MySQL‐Tabelle arbeiten

Datensätze in eine Tabelle eintragen

Sie können Datensätze in eine MySQL‐Tabelle sowohl mithilfe von
phpMyAdmin als auch, wie später beschrieben, über PHP‐Befehle
eintragen.

 Wechseln Sie mit dem Hyperlink Tabellenname  in die Tabellen‐

strukturansicht.

 Klicken Sie am oberen Bildschirmrand auf den Hyperlink Einfügen,
um Daten für einen Datensatz einzugeben.

 Klicken Sie auf die Schaltfläche OK , um zur Tabelle zurückzu‐
kehren, oder wählen Sie aus dem Kombinationsfeld  den
Eintrag anschließend einen weiteren Datensatz einfügen, um
einen weiteren Datensatz einzufügen.

 Im Beispiel handelt es sich bei dem Feld id um ein Feld mit einer automatischen Nummerie‐
rung . Aus diesem Grund lassen Sie das Feld leer. MySQL vergibt automatisch den
nächsthöheren freien Wert bei der Speicherung des Datensatzes.

 Bestätigen Sie mit OK.

 Über den Hyperlink Anzeigen können Sie sich die Datensätze der Tabelle ansehen.



Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 212 © HERDT‐Verlag

Einen neuen Datensatz in eine Tabelle einfügen

 Tragen Sie die Datensätze aus der folgenden Abbildung in die Tabelle ein.

Beispieltabelle „bestellung“ in Datenbank „obstladen“

13.5 SQL‐Dumps exportieren und importieren

Für die Arbeit mit einem PHP‐Projekt werden Sie in der Regel mit bereits vorhandenen Daten‐
banken arbeiten. phpMyAdmin stellt Funktionen für den Import und Export von Datenbank‐ und
Tabellenstruktur sowie der Daten bereit.

Daten exportieren

Datenbank‐ und Tabellenstruktur sowie die Daten selber können per Klick aus phpMyAdmin
exportiert werden. Das Ergebnis eines Exports ist ein sogenannter SQL‐Dump (SQL‐Exportdatei).
Dieser kann als Datei gespeichert werden. Es handelt sich um eine Text‐Datei mit SQL‐
Statements, die zum Import der Daten dient. Für SQL‐Dumps steht die Dateinamenserweiterung
*.sql zur Verfügung.







Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 213

 Je nachdem, ob Sie eine ganze Datenbank oder nur eine Tabelle exportieren möchten,
klicken Sie in der phpMyAdmin‐Navigation links eine Datenbank oder eine Tabelle an.

 Wählen Sie in der oberen Menüleiste im Hauptfenster den Menüpunkt Exportieren. Falls nur
die Datenbank  angezeigt wird, können Sie alle Tabellen der Datenbank exportieren. Wird
dort zusätzlich ein Tabellenname  angezeigt, führt der Klick auf Exportieren zum Export der
einzelnen Tabelle.

 phpMyAdmin bietet
zwei Varianten des
Datenexports, den
schnellen sowie den
angepassten.

 Standardmäßig ist Schnell ausgewählt. Hier müssen Sie keine weiteren Einstellungen vor‐
nehmen, der SQL‐Dump wird mit Standardeinstellungen generiert, der für den Import der
Tabellen in andere Datenbanken notwendig ist.

 Möchten Sie zusätzlich die Datenbank selber exportieren, müssen Sie unter dem Punkt

Objekterstellungsoptionen die Auswahl Angepasst treffen und zusätzlich den Befehl CREATE
DATABASE aktivieren.

 Bestätigen Sie mit OK. Wählen Sie im geöffneten Dialogfenster, ob Sie den SQL‐Dump mit
einem Editor öffnen oder auf Ihrer Festplatte speichern möchten.

 Ein SQL‐Dump enthält alle SQL‐Befehle, die zum Anlegen von Datenbanken und Tabellen
bzw. zum Einfügen von Daten notwendig sind. Die SQL‐Befehle liegen genau in der Reihen‐
folge vor, wie sie für den Import von Datenbank‐ und Tabellenstruktur und Daten benötigt
werden. SQL‐Dumps müssen mit der Dateinamenerweiterung *.sql gespeichert werden.

 Alternativ zum Export als Downloaddatei können Sie bei Auswahl des angepassten Daten‐
exports die Option Ausgabe als Text anzeigen auswählen. In dem Fall werden die SQL‐Befehle
in einem Textfeld angezeigt und können von dort direkt zum Import herauskopiert werden.

Daten importieren

Der Import eines SQL‐Dumps ist einfach. Um die Daten einer *.sql‐Datei zu importieren, haben
Sie zwei Möglichkeiten:

 Öffnen Sie die SQL‐Datei mit einem Texteditor,

z. B. Notepad++.

 Wählen Sie in der oberen Menüleiste den Eintrag
SQL aus. Falls Sie nur eine Tabelle in eine Datenbank
importieren möchten, wählen Sie zuerst eine
Datenbank aus. Sie erkennen an der obersten Leiste
im Hauptfenster von phpMyAdmin, ob Sie sich auf
der Datenbankserverübersicht oder auf der
Übersicht einer ausgewählten Datenbank befinden.

 Nach Klick auf den Menüpunkt SQL öffnet sich ein
Textfeld zur Eingabe. Kopieren Sie die Befehle aus
der SQL‐Datei in das Textfeld hinein, bestätigen Sie
das Speichern mit dem Button OK. Die Datenbank
bzw. Tabelle wird importiert, indem alle SQL‐
Befehle ausgeführt werden.

 

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 214 © HERDT‐Verlag

 Im Fehlerfall zeigt phpMyAdmin eine Fehlermeldung an. Übliche Fehler sind z. B.: Eine
Datenbank, die Sie importieren möchten, existiert bereits oder eine fehlerhafte SQL‐Datei
bzw. Datensätze mit eindeutigen IDs, die in Tabellen bereits vergeben sind.

 Alternativ können Sie auch den
Menüpunkt Importieren wählen. In dem
Fall steht Ihnen ein Upload‐Formular
zur Verfügung.

 Über die Schaltfläche Durchsuchen…
wählen Sie die SQL‐Datei auf Ihrer
Festplatte aus.

 Bestätigen Sie den Button OK.
Der Import startet. Je nach Größe der Datei dauert dies einen Moment. Auch hier kann es zur
Fehleranzeige kommen, welche die gleichen Ursachen haben, wie oben bereits beschrieben.

Beispieldaten importieren: obstladen‐bestellung.sql

Die in den vorherigen Kapiteln erstellte Datenbank, die Tabelle sowie die Daten stehen als SQL‐
Dump unter den Beispieldaten zur Verfügung. Beachten Sie bei Import‐Dateien folgendes:

 Das CREATE‐Statement für die Datenbank wird mit CREATE DATABASE IF NOT
EXISTS eingeleitet. Die Datenbank wird nur dann erzeugt, wenn keine Datenbank mit

dem Namen obstladen vorhanden ist.

 Das Statement zum Erstellen der Tabelle wird ebenfalls mit CREATE TABLE IF NOT
EXISTS eingeleitet. Die Tabelle wird nur erzeugt, wenn sie noch nicht vorhanden ist.

 Sowohl Datenbank als auch Tabelle werden mit dem UTF8‐Zeichensatz angelegt.

 Die Import‐Datei enthält den Befehl TRUNCATE TABLE 'bestellung';. Dieser Befehl
löscht eventuell vorhandene Daten aus der Tabelle bestellung.

 Die Daten der Tabelle werden importiert, der Primärschlüssel wird gesetzt, der Wert für das
Autoinkrement wird angepasst.

13.6 PHP und MySQL

Nachdem Sie eine MySQL‐Datenbank sowie eine Tabelle darin erstellt haben, können Sie mithilfe
von PHP Datensätze aus einer Tabelle bearbeiten, beispielsweise anzeigen, ändern, löschen, aber
auch erzeugen. Die notwendigen Schritte für den Zugriff auf eine Datenbank werden in diesem
Kapitel schrittweise gezeigt. Zur Bearbeitung der Datenbank benötigen Sie entsprechende
Berechtigungen.

In der Vergangenheit war die Erweiterung MySQL eine Standardmethode, um auf Daten‐
banken zuzugreifen. Mit PHP 7.0 wurde diese Erweiterung entfernt und kann nicht mehr
genutzt werden.

Stattdessen empfiehlt www.php.net, die mysqli‐Erweiterung (MySQL Improved Extension)
oder die PDO_MYSQL‐Erweiterung (PHP Data Objects (PDO) interface) zu nutzen. Beide
Erweiterungen nutzen den objektorientierten Ansatz der PHP‐Programmierung (mehr über
Objektorientierung finden Sie im HERDT‐Buch PHP ‐ Fortgeschrittene Techniken der Web‐
Programmierung).

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 215

Obwohl auch mysqli eine objektorientiert Klasse ist, bietet diese Erweiterung sogenannte
Alias‐Funktionen. Das sind Funktionsaufrufe, die den Funktionen der alten MySQL‐
Erweiterung in der Schreibweise ähneln, tatsächlich verbergen sich dahinter aber Methoden‐
aufrufe der mysqli‐Klasse. Aufgrund der einfacheren Syntax der mysqli‐Funktionen wird in
diesem Buch diese PHP‐Erweiterung für das Arbeiten mit Datenbanken vorgestellt.

Benutzer für Datenbankzugriffe aus PHP anlegen

Über die obere Navigationsleiste des
phpMyAdmin finden Sie den Link
Benutzerkonten. Über diesen Link
gelangen Sie zur Nutzerverwaltung der
Datenbank. In der ersten Übersicht
sehen Sie die bereits mit der Installa‐
tion von XAMPP eingerichteten Nutzer.

XAMPP wird standardmäßig mit einem
Administrationsnutzerkonto für den
Zugriff auf den Datenbankserver
eingerichtet. Der Name des Nutzers ist

root, dieser wird ohne Passwort
angelegt. Dieses Nutzerkonto verfügt
über die Administrationsrechte für den
kompletten Datenbankserver.

Der root‐Nutzer sollte in PHP‐Skripten auf keinen Fall genutzt werden. Sowohl die
vollständigen Administrationsrechte als auch das fehlende Passwort stellen ein hohes
Sicherheitsrisiko dar.

PHP‐Nutzer für den Zugriff aus Skripten anlegen

 Legen Sie zuerst einen Nutzer für die Verwendung in PHP‐Skripten an.

 Wechseln Sie über den Link Benutzerkonten (phpMyAdmin, oberes Menü) in die
Nutzerverwaltung.

 Unterhalb der Benutzerkontenübersicht finden Sie den Link Benutzerkonto hinzufügen.

Mit Klick auf den Link Benutzerkonto
hinzufügen öffnet sich das entsprechende
Formular. Der Benutzername ist frei
wählbar. Das Feld Host ist beim Öffnen
mit einem %‐Zeichen vorausgefüllt.
Dieses können Sie belassen, damit kann
der Benutzer den Datenbankserver über
einen beliebigen Host ansprechen, z. B.
auch über die IP‐Adresse des Rechners.
Falls Sie im Auswahlfeld Host den Eintrag
Lokal auswählen, wird das Feld automa‐
tisch mit dem Wert localhost gefüllt.

Nutzer der Standardinstallation des XAMPP‐Webservers

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 216 © HERDT‐Verlag

Damit schränken Sie den Zugriff auf den Datenbankservernamen localhost ein, was eine höhere
Sicherheit darstellt. Vergeben Sie zusätzlich ein sicheres Passwort oder verwenden Sie die Schalt‐
fläche Generieren, um ein Passwort zu erzeugen.

Zusätzlich müssen die Rechte für
den Benutzer gesetzt werden. Für
einfache Datenbankabfragen
reichen die Rechte aus der
Gruppe Daten . Sollen über PHP
auch Änderungen an der
Tabellenstruktur möglich sein,
vergeben Sie zusätzlich ent‐
sprechende Rechte aus der
Gruppe Struktur . Administra‐
tionsrechte  hingegen werden
einem Benutzer für PHP‐Skripte
nicht vergeben, dies würde ein
Sicherheitsrisiko darstellen. Bei
Internetprovidern sind in der
Regel Rechte wie CREATE
DATABBASE, CREATE USER
und SET PASSWORD geblockt.

Selbst wenn der Provider phpMyAdmin zur Verwaltung der Datenbank anbietet, können Sie in der
Regel darüber keine Datenbanken löschen oder Nutzer anlegen. Für diese Aktionen bieten Provider
andere Administrationsoberflächen an.

 Nach Eingabe der Daten und Vergabe der Rechte betätigen Sie die Schaltfläche OK.

 Der Benutzer wird gespeichert und steht sofort für den Einsatz in PHP‐Skripten zur
Verfügung.

Blockierende Benutzer löschen

In der Standard‐Installation des XAMPP‐Webservers ist ein Nutzerkonto Jeder ohne Passwort und
ohne Rechte eingerichtet. Dieser Nutzer blockiert andere Nutzer. Von daher wählen Sie die
Checkboxen in beiden Zeilen des Nutzers Jeder aus, weiter unten finden sie den Block
Die ausgewählten Benutzerkonten löschen. Über die Schaltfläche OK löschen Sie die markierten
Nutzerkonten.

Das Nutzerkonto „Jeder“ hindert weitere Nutzer am Datenbankzugriff – der Nutzer wird gelöscht.

Die Schaltfläche „OK“ zum Bestätigen des Löschens befindet sich weiter unten.

  

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 217

PHP mit dem MySQL‐Server verbinden

Eine Verbindung zum MySQL‐Server wird aus dem PHP‐Programm heraus hergestellt. Folgende
Funktionen werden zum Aufbau und Beenden einer Verbindung zu einem MySQL‐Server
verwendet:

mysqli_connect(); Verbindung zum MySQL‐Server aufnehmen

mysqli_close(); Verbindung zum verbundenen MySQL‐Server beenden

Syntax der Funktion mysqli_connect()

mysqli_connect ([Server [, Benutzername [, Passwort [, Datenbank
[,Port [,Socket]]]]]]);

 Erster Parameter ist der Name oder die IP des Datenbankservers. Falls NULL oder
localhost übergeben wird, versucht die Funktion die Verbindung zum lokalen Daten‐
bankserver aufzunehmen.

 Zweiter Parameter ist der Datenbank‐Benutzername, dritter das dazugehörige Passwort.
Wird kein Benutzername angegeben, wird der Name des Benutzers verwendet, dem der
Server‐Prozess gehört. Wird kein Passwort angegeben, wird ein leeres Passwort benutzt.

 Als vierter Parameter kann der Name der Datenbank übergeben werden. Falls Sie diesen

Parameter weg lassen, stellt mysqli_connect die Verbindung zum Datenbankserver her,
ohne aber eine Datenbank auszuwählen. Mit der Angabe einer Datenbank wird diese mit
dem Funktionsaufruf sofort ausgewählt.

 Als fünften Parameter können Sie einen Port angeben. Für die Verbindung zum Datenbank‐

server ist standardmäßig der Port 3306 konfiguriert, was bei den meisten Webservern auch
der Fall ist. Insofern ist die Angabe eines Ports zumeist überflüssig. Ist für den Datenbank‐
server ein anderer Port konfiguriert, müssen Sie den entsprechenden Port als integer
angeben.

 Der letzte optionale Parameter ist der Pfad zu einem Socket, z. B. /tmp/mysql.sock.

 Alle Parameter von mysqli_connect() sind optional.

 Als Rückgabewert erhalten Sie ein Objekt, welches Sie in einer Variablen speichern. Diese
Variable hat automatisch den Datentyp object. Diese Variable repräsentiert die Verbindung
zur Datenbank, Sie benötigen diese für alle weiteren Aktionen mit der Datenbank.

 Scheitert der Verbindungsaufbau zur Datenbank, gibt mysqli_connect() FALSE zurück.

 Sie können in einem PHP‐Skript mehr als eine Datenbankverbindung aufbauen (z. B. weil Sie
auf mehrere Datenbanken zugreifen wollen). In dem Fall vergeben Sie für jedes Daten‐

bankobjekt eine individuelle Variable (z. B. $verbindung1, $verbindung2).

Schlägt mysqli_connect() fehl, wird nur eine Warnung ausgegeben, das PHP‐Skript jedoch
weiter ausgeführt. Dies ist häufig nicht gewünscht, da jeder weitere Befehl zur Steuerung von
Datenbanken damit fehlschlägt. Es empfiehlt sich der Einsatz der Funktion

mysqli_connect() in Kombination mit dem Befehl or die("Meldung").

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 218 © HERDT‐Verlag

Dieser or‐Zweig wird dann ausgeführt,
wenn die Datenbankverbindung fehlge‐
schlagen ist. Die Ausführung des Skripts wird mit der Funktion die() nach der Ausgabe des
Parameters Meldung abgebrochen.

Beispiel:

mysqli_connect("localhost", "php-user", "vHM4HVjzqEjyPK3r")
or die("Verbindung konnte nicht hergestellt werden.");

Alternativ können Sie den Rückgabewert auf FALSE überprüfen, um die Seite nicht abrupt
abzubrechen und eine nutzerfreundliche Meldung anzuzeigen, die Sie entsprechend in das Web‐
seitenlayout implementieren. In dem Fall dürfen nachfolgende SQL‐Zugriffe nicht ausgeführt

werden, sondern sollten über if‐Abfragen übersprungen werden.

Syntax der Funktion mysqli_close()

 Diese Funktion beendet eine Verbindung
mit dem Datenbank‐Server. Die Angabe

der Verbindungskennung ist zwingend notwendig. Ohne diesen Parameter gibt PHP
eine Fehlermeldung vom Typ warning aus. Die Datenbankverbindung wird dann nicht
geschlossen.

 PHP schließt, nachdem ein PHP‐Skript vollständig ausgeführt wurde, automatisch die Server‐
Verbindung. Sie sollten dennoch eine Verbindung immer selbst schließen, um genutzte
Ressourcen sicher – und möglichst frühzeitig – freizugeben. Dies gehört unter anderem zum
guten Stil in der PHP‐Programmierung.

Beispiel: db_connect.php

Es wird eine Verbindung zum lokalen MySQL‐Server hergestellt und wieder geschlossen. Zur
Demonstration werden entsprechende Meldungen am Bildschirm ausgegeben.

 <?php

 $server = "localhost";
 $user = "php-user";
 $pass = "vHM4HVjzqEjyPK3r";

 // Verbindungsaufnahme mit dem MySQL-Server

 $verbindung = mysqli_connect($server, $user, $pass)

 or die("Verbindung konnte nicht hergestellt werden.");

 echo "<p>Die Verbindung mit dem Server wurde hergestellt.</p>";

 $return = mysqli_close($verbindung);
 if ($return) {
 echo "<p>Die Verbindung mit dem Server wurde beendet. </p>";
 } else {
 echo "<p>Die Verbindung mit dem Server konnte nicht geschlossen
 werden. </p>";
 }
?>

mysqli_connect() or die("Meldung");

mysqli_close(Verbindungskennung);

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 219

  Zu Beginn des Skripts werden die Anmeldedaten für einen Zugriff auf den MySQL‐Server

hinterlegt. Der Server ist auf dem lokalen Rechner installiert (localhost). Den Variablen
$user für den Benutzer und $pass für das Passwort werden die Werte des PHP‐Benutzers
zugewiesen.

  Über die Funktion mysqli_connect() und mit der Angabe der Anmeldedaten wird eine
Verbindung zum MySQL‐Server hergestellt. Das zurückgegebene Objekt wird in der Variablen

$verbindung gespeichert.

  Sind die Anmeldedaten nicht korrekt
bzw. ist der MySQL‐Server nicht
gestartet, kann keine Verbindung
hergestellt werden. In diesem Fall

erhält die Variable $verbindung den
Rückgabewert FALSE, der den mit or
eingeleiteten Zweig auslöst. Dort wird

über die Funktion die() eine Fehler‐
meldung ausgegeben und das aktuelle
Skript beendet.

 War die Verbindung erfolgreich, wird am Ende des Skripts die aktuelle Verbindung zum

Server mit der Funktion mysqli_close() getrennt. Als Parameter wird die Variable

$verbindung übergeben, welche das Verbindungsobjekt enthält.

Alle Beispieldateien arbeiten mit dem Nutzer $user = "php-user" und dem Passwort

$pass = "vHM4HVjzqEjyPK3r". Zum schnellen Einstieg und falls Sie keinen Nutzer

einrichten möchten, können Sie auch den Nutzer root ohne Passwort verwenden. Eine
Empfehlung ist dieser Hinweis jedoch nicht!

Die gewünschte Datenbank auswählen
Nach einer erfolgreichen Verbindung zum MySQL‐Server bestimmen Sie mithilfe von

mysqli_select_db(), welche Datenbank genutzt werden soll.

mysqli_select_db(); Auswahl der Datenbank

Syntax der Funktion mysqli_select_db()

mysqli_select_db(Verbindungskennung, Datenbankname);

 Das von mysqli_connect() zurückgelieferte Objekt wird als erster Parameter
angegeben.

 Als zweiten Parameter übergeben Sie den Namen der zu nutzenden Datenbank Daten-
bankname.

 Der Rückgabewert ist bei Erfolg TRUE, ansonsten FALSE.

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 220 © HERDT‐Verlag

Beispiel: db_select.php

Nachdem eine Verbindung zum lokalen MySQL‐Server hergestellt wurde, muss nun die
gewünschte Datenbank ausgewählt werden.

 <?php
 $server = "localhost";
 $user = "php-user";
 $pass = "vHM4HVjzqEjyPK3r";
 $database = "obstladen";

 // Verbindungsaufnahme mit dem MySQL-Server
 $verbindung = mysqli_connect($server, $user, $pass)or die
 ("Verbindung konnte nicht hergestellt werden.");

 // Auswahl der gewünschten Datenbank

 mysqli_select_db($verbindung, $database)or die("Fehler
 beim Zugriff auf die gewünschte Datenbank");

 echo "<p>Die Datenbank $database wurde
 ausgewählt.</p>";
?>

 Die gezeigten Skriptzeilen werden in die Beispieldatei db_select.php integriert. Nach der

Verbindung mit dem Datenbank‐Server wird über die Funktion mysqli_select_db()
die als zweiter Parameter angegebene Datenbank obstladen (gespeichert in der Variab‐
len $database) ausgewählt. Wichtig ist, dass als erster Parameter die Objektvariable für
die Verbindungskennung angegeben ist. Schlägt die Auswahl der Datenbank fehl, wird das
Skript nach der Ausgabe einer Meldung beendet.

  Es erfolgt eine Ausgabe, dass die Datenbank ausgewählt wurde. Diese Zeile des Skripts wird
nur erreicht, wenn die Aktivierung der Datenbank erfolgreich war.

Verbindung mit einem Datenbankserver herstellen und eine
Datenbank auswählen

Beispiel: db_connect_select.php

Die beiden Schritte, Verbindungaufbau zum Datenbankserver und Auswahl der Datenbank
können in einem Schritt umgesetzt werden.

 <?php
 $server = "localhost";
 $user = "php-user";
 $pass = "vHM4HVjzqEjyPK3r";
 $database = "obstladen";

 // Verbindungsaufnahme mit dem MySQL-Server und Datenbankauswahl

 $verbindung = mysqli_connect($server, $user, $pass, $database)
 or die("Verbindung konnte nicht hergestellt werden.");

 echo "<p>Die Verbindung mit dem Server wurde hergestellt, die
 Datenbank $database wurde ausgewählt.</p>";
?>

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 221

 Beim Verbindungaufbau über mysqli_connect() wird der vierte Parameter für die
Auswahl der Datenbank angegeben. Nach dem Herstellen der Verbindung wird die ange‐
gebene Datenbank ausgewählt. Eine separate Auswahl der Datenbank erübrigt sich damit.
Falls die Verbindung nicht hergestellt oder die Datenbank nicht ausgewählt werden kann,

liefert mysqli_connect() FALSE zurück, das PHP‐Skript wird in dem Fall mit dem

die()‐Befehl und der Ausgabe einer Fehlermeldung beendet.

 Nur wenn der Verbindungsaufbau und die Auswahl der Datenbank erfolgreich waren, wird
diese Zeile im PHP‐Code erreicht – es wird eine Erfolgsmeldung angezeigt.

13.7 MySQL‐Abfragen

Abfrage senden
Zur Abfrage der Tabellendaten einer bestimmten Datenbank sind die nachfolgenden Befehle
notwendig.

mysqli_query(); Senden einer MySQL‐Anfrage zur aktiven Datenbankverbindung

Syntax der Funktion mysqli_query()

mysqli_query(Verbindungskennung, SQL-Abfrage);

 Eine Anfrage an MySQL realisieren Sie über die Funktion mysqli_query().

 Der erste Parameter stellt die Verbindungskennung dar, als zweiten geben Sie ein SQL‐
Statement, also eine beliebige Datenbank‐Abfrage an.

 Als Rückgabewert erhalten Sie entweder ein Objekt (bei SELECT‐Statements), ein TRUE (z.
B. bei INSERT‐Statements) oder ein FALSE im Fehlerfall. Das zurückgelieferte Objekt bei

einem SELECT‐Statement liefert die Anzahl der Felder sowie die Anzahl der Zeilen, die
ermittelt worden sind, die eigentlichen Daten sind in diesem Objekt nicht enthalten. Die
Daten selber werden danach über weitere mysqli‐Funktionen ermittelt (weiter unten).

Beispiel: mysqli_query.php

In diesem Beispiel wird eine Verbindung zur Datenbank aufgenommen und eine SQL‐Anweisung
ausgeführt. Zur Veranschaulichung wird jede Aktion als Meldung im Browser ausgegeben.

 <?php
 $server = "localhost";
 $user = "php-user";
 $pass = "vHM4HVjzqEjyPK3r";
 $database = "obstladen";

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 222 © HERDT‐Verlag

 $verbindung = mysqli_connect($server, $user, $pass, $database)
 or die("Verbindung konnte nicht hergestellt werden.");

 echo "<p>Die Verbindung mit dem Server wurde hergestellt, die
 Datenbank $database wurde ausgewählt.</p>";

 $sql = "SELECT * FROM bestellung";

 if ($result = mysqli_query($verbindung, $sql)) {
 echo "<p>Die SQL-Anweisung war erfolgreich.</p>";
 echo "<pre>";
 print_r($result);
 echo "</pre>";
 } else {
 echo "<p>Die SQL-Anweisung ist fehlgeschlagen.</p>";
 }

 $return = mysqli_close($verbindung);
 if ($return) {
 echo "<p>Die Verbindung mit dem Server wurde beendet. </p>";
 } else {
 echo "<p>Die Verbindung mit dem Server konnte nicht geschlossen
 werden. </p>";
 }
?>

 Es wird versucht, eine Verbindung zum SQL‐Server herzustellen und mit dem Aufruf gleich‐

zeitig die Datenbank obstladen (über die Variable $database) ausgewählt. Kommt
keine Verbindung zustande, wird das Skript mit einer Fehlermeldung abgebrochen.

 Es folgt die Formulierung einer SQL‐
Abfrage. Der SQL‐Befehl kann in
Anführungszeichen direkt in der Funktion

mysqli_query()notiert werden.
Eleganter und übersichtlicher ist es
hingegen, den SQL‐Befehl in einer Variablen
zu speichern. So haben Sie die Möglichkeit,
den Befehl über PHP dynamisch zusammen‐
zusetzen. Im Beispiel sollen alle Felder der

Tabelle bestellung ausgewählt werden.
Beachten Sie, dass die Abfrage in Zeile 
noch nicht ausgeführt, sondern lediglich in
der Variablen $sql gespeichert wird.

 Danach wird die Funktion mysqli_query()mit den Parametern $verbindung und
$sql aufgerufen und in einem Schritt das zurückgelieferte Objekt in der Variablen $result
gespeichert. Die Funktion gibt im Erfolgsfall ein Objekt zurück, ansonsten FALSE. Je nach‐
dem, ob die Anweisung erfolgreich ausgeführt werden konnte, wird eine entsprechende

Meldung angezeigt. Zusätzlich wird das Objekt $return auf dem Bildschirm ausgegeben. Es
enthält u. a. Informationen über die Anzahl der Felder und Zeilen.

 Zum Schluss wird die Verbindung zum MySQL‐Server wieder geschlossen.

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 223

Fehlertext von SQL‐Operationen anzeigen

mysqli_error(); Ausgabe eines SQL‐Fehlers

Syntax der Funktion mysqli_error()

mysqli_error(Verbindungskennung);

Um Informationen zum aufgetretenen Fehler – sei es bei der Verbindungsaufnahme, bei Abfra‐

gen oder anderen Operationen – zu erhalten, verwenden Sie die Funktion mysqli_error().
Diese leitet den Fehlertext der zuletzt ausgeführten MySQL‐Funktion vom MySQL‐Server an das
PHP‐Skript weiter. Diese Informationen können dabei helfen, Fehler schnell zu finden und zu
beheben.

Beispiel: Ausschnitt aus mysqli_error.php

In diesem Ausschnitt soll eine Fehlerrückgabe ausgelöst werden. Hierfür wurde bewusst ein

syntaktischer Fehler  in eine SQL‐Abfrage eingefügt. Es werden keine Feldnamen bzw. kein *
für die Rückgabe aller Feldnamen, die für eine SELECT‐Anweisung zwingend erforderlich sind,
angegeben, die aus der Tabelle ausgelesen werden sollen.

 $sql = "SELECT FROM bestellung";
 // FEHLER: hier wurde nicht angegeben,
 // welche Felder der Tabelle ausgewählt werden sollen

 if (mysqli_query($verbindung, $sql)) {
 echo "<p>Die SQL-Anweisung war erfolgreich.</p>";
 } else {
 echo "<p>SQL-Fehler! SQL meldet:
" .
 mysqli_error($verbindung) . "</p>";
 }

Ansicht der Beispieldatei „mysqli_error.php“. „You have an error… near…“ Sie erhalten
einen Hinweis, an welcher Stelle ein Fehler aufgetreten ist.



Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 224 © HERDT‐Verlag

13.8 Rückgabe aus MySQL‐Abfrage auswerten

Datensätze einer MySQL‐Tabelle mithilfe von PHP anzeigen

Nachdem die Verbindung zur MySQL‐Datenbank obstladen hergestellt wurde, können Sie z. B.
die Anzahl der Datensätze oder alle Datensätze der Tabelle bestellung anzeigen. Wenn Sie
wissen möchten, wie viele Datensätze die SQL‐Abfrage zurückliefert, verwenden Sie die Funktion
mysqli_num_rows().

Syntax der Funktion mysqli_num_rows()

 Diese Anweisung liefert Ihnen die Anzahl
der Datensätze, die mit dem SQL‐Befehl

SELECT an das Skript zurückgeliefert werden.

 Der Parameter Abfrageergebnis ist das zurückgelieferte Objekt der aktuellen SQL‐
Abfrage, also dem Rückgabewert der Funktion mysqli_query().

Beispiel

 $ergebnis = mysqli_query("SELECT * FROM bestellung");
 echo mysqli_num_rows($ergebnis);

Ausgabe der Datensätze mit der Funktion mysqli_fetch_array()

Über die Funktion mysqli_fetch_array()in Kombination mit einer while‐Schleife können
Sie die einzelnen Zeilen der Datenbankabfrage auslesen. Dazu notieren Sie im Kopf der while‐
Schleife die Funktion mysqli_fetch_array()mit dem Objekt, das Sie von der Funktion

mysqli_query() als Rückgabewert erhalten haben, als Parameter. Bei jedem Schleifen‐

durchlauf wird eine Ergebniszeile als Array gespeichert. Die while‐Schleife wird solange
ausgeführt, bis alle Einträge der Datenbankabfrage durchlaufen sind.

Syntax der Funktion mysqli_fetch_array()

mysqli_fetch_array(Abfrageergebnis [, Ergebnistyp]);

 Der anzugebende Parameter Abfrageergebnis stellt die Ergebniskennung der aktuellen
SQL‐Abfrage dar.

 Mit der optionalen Angabe Ergebnistyp legen Sie fest, mit welchem Arraytyp die Daten

des Ergebnisses zurückgegeben werden. Die möglichen Parameter sind MYSQLI_ASSOC,
MYSQLI_NUM oder MYSQLI_BOTH. Hiermit bestimmen Sie, wie Sie die Elemente des
Arrays ansprechen möchten.

 Bei MYSQLI_ASSOC verwenden Sie den Feldnamen der Tabelle als Schlüssel im Array

(z. B. zeile["sorte"], assoziatives Array).

 Bei MYSQLI_NUM arbeiten Sie über die Angabe des numerischen Indexes (z. B.
zeile[3], numerisch indiziertes Array).

mysqli_num_rows(Abfrageergebnis);

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 225

 Wenn Sie die Option MYSQLI_BOTH verwenden, sind beide Varianten zum
Ansprechen eines Elements möglich. (Das Array enthält dann sowohl numerische als
auch assoziative Schlüssel, d. h., jeder Wert ist im Array doppelt vorhanden und über
zwei verschiedene Schlüssel ansprechbar.)

 Wenn Sie keinen Ergebnistyp angeben, wird standardmäßig die Option MYSQLI_BOTH
verwendet.

Beispiel: mysqli_fetch_array.php (Auszug)

In diesem Beispiel werden Datensätze aus einer Tabelle ausgelesen und angezeigt.

 $sql = "SELECT * FROM bestellung";
 $abfrage = mysqli_query($verbindung, $sql);
 if (!$abfrage) {
 echo "<p>Die SQL-Anweisung ist fehlgeschlagen.</p>";
 }

 $anzahl = mysqli_num_rows($abfrage);
 echo "<p>In der Tabelle befinden sich $anzahl Datensätze:</p>";
 echo "";

 while ($zeile = mysqli_fetch_array($abfrage)) {
 echo "" . $zeile["id"] . ": "
 . $zeile["vorname"] . " "
 . $zeile["nachname"] . ", "
 . $zeile["ort"] . ", "
 . $zeile["menge"] . " kg "
 . $zeile["sorte"] . ".";
 }
 echo "";

Auszug aus der Datei „mysqli_fetch_array.php“. Aufbau der Datenbankverbindung und das Schließen der
Verbindung werden hier nicht dargestellt.

 Die Anzahl der Datensätze ermitteln Sie mit

der Funktion mysqli_num_rows().

 Mithilfe der Funktion

mysqli_fetch_array() ermitteln Sie
ein Array, das dem aktuellen Datensatz
(also einer Zeile des Ergebnisses aus der
Tabelle) entspricht. Gleichzeitig wird durch
diese Funktion der sogenannte
Datensatzzeiger auf den nächsten
Datensatz des Ergebnisses gesetzt. Durch

die while‐Schleife werden somit
nacheinander alle Datensätze der Tabelle

an ein Array ($zeile) übergeben. Die
Schlüssel dieses Arrays sind die Feldnamen
der MySQL‐Tabelle. Wenn keine weiteren

Datensätze vorliegen, wird FALSE zurück‐
gegeben und damit die Schleife beendet.

Anzeige der Beispieldatei „mysqli_fetch_array.php“

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 226 © HERDT‐Verlag

Zeichensatz mit der Funktion mysqli_set_charset() festlegen
Die mysqli‐Erweiterung arbeitet standard‐

mäßig mit dem Zeichensatz (charset) latin1
und behandelt die eingelesenen Daten, als
hätten sie die collation

latin1_swedish_ci.
Das führt bei Umlauten und dem ß in der Praxis regelmäßig zu Darstellungsproblemen. Die Sonder‐
zeichen werden nicht korrekt erkannt, der Browser ersetzt Zeichen, die er nicht darstellen kann, mit
einem Platzhalter, wie in der Abbildung zu sehen ist.

Um dem Problem zu begegnen, steht in PHP die Funktion mysqli_set_charset() zur
Verfügung. Diese erwartet als erstes das Objekt der Datenbankbindung, als zweites den
gewünschten Zeichensatz. Da UTF8 derweil als Standardzeichensatz angesehen werden kann,
alle beschriebenen Dateien in diesem Buch mit dem Zeichensatz UTF8 gespeichert sind, die
Datenbank mit dem Zeichensatz UTF8 angelegt ist, setzen Sie für die Datenbankverbindung
ebenfalls die UTF8‐Einstellung. Es empfiehlt sich, die Zuweisung des Zeichensatzes direkt nach

dem Aufbau der Verbindung zur Datenbank über mysqli_connect() durchzuführen.

Syntax der Funktion mysqli_set_charset ()

mysqli_set_charset(Verbindungskennung, Zeichensatz);

Beispiel: mysqli_fetch_array.php (Auszug)

 $verbindung = mysqli_connect($server, $user, $pass, $database)
 or die("Verbindung konnte nicht hergestellt werden.");

 if (!mysqli_set_charset($verbindung, "utf8")) {

 printf("Zeichensatz konnte nicht gesetzt werden: %s\n",
 mysqli_error($verbindung));
 } else {

 printf("Aktuell verwendeter Zeichensatz: %s\n",
 mysqli_character_set_name($verbindung));
 }

Auszug aus der Datei „mysqli_fetch_array.php“. Hier der Ausschnitt mit der Funktion
mysqli_set_charset().

 Über die Funktion mysqli_set_charset() setzen Sie den Zeichensatz für die Daten‐
bankverbindung auf UTF8. Als ersten Parameter erwartet die Funktion das Objekt der
Datenbankverbindung.

 Falls der Zeichensatz nicht gesetzt werden kann, gibt die Funktion FALSE zurück. Neben
fehlender Verbindungskennung kann auch ein falsch geschriebener Zeichensatz die Fehler‐
ursache sein. Das Skript meldet hier den Fehler.

 Im Erfolgsfall wird eine entsprechende Meldung ausgegeben. Über die Funktion

mysqli_character_set_name() können Sie zusätzlich den verwendeten Zeichensatz
im Browser ausgeben.

Fehlerhafte Darstellung bei Verwendung des falschen
Zeichensatzes

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 227

13.9 Formulardaten in einer MySQL‐Datenbank speichern

Die von Ihnen erstellten Tabellen der Datenbank können Sie von den Besuchern Ihrer Webseite
automatisch füllen lassen. Dazu füllt der Benutzer ein Formular aus. Mithilfe von PHP werden
dann die Formulardaten in die MySQL‐Datenbank‐Tabelle eingetragen.

Beispiel: bestellformular_db.html

 <h1>Apfelkauf im Obstladen</h1>
<p>Bitte geben Sie folgende Daten für Ihre Bestellung ein:</p>

<form action="bestellung_db.php" method="post">

 <p>Vorname: <input type="text" name="vorname"></p>
 <p>Nachname: <input type="text" name="nachname"></p>
 <p>Wohnort: <input type="text" name="ort"></p>
 <p>Menge (in kg): <input type="text" size="5"
 name="menge"></p>
 <p>Apfelsorte:
 <input type="radio" name="sorte" value="Jonagold">Jonagold
 <input type="radio" name="sorte" value="Gala">Gala
 <input type="radio" name="sorte" value="Elstar">Elstar
 </p>
 <p><input type="submit" value="Abschicken"></p>
</form>

 Die Daten des Formulars werden an das PHP‐Skript
bestellung_db.php übergeben.

 Die vom Besucher einzugebenden Daten sind: Vorname,
Nachname, Wohnort, Menge sowie die Auswahl einer
Sorte über Radiobuttons.

Beispiel: bestellung_db.php (Auszug)

Im Folgenden wird ein PHP‐Skript erstellt, das die Daten des obigen HTML‐Formulars auswertet.

Die eingetragenen Daten sollen in die Tabelle bestellung der Datenbank obstladen
gespeichert werden.

 $vorname = $_POST["vorname"];
 $nachname = $_POST["nachname"];
 $ort = $_POST["ort"];
 $sorte = $_POST["sorte"];
 $menge = $_POST["menge"];

 $verbindung = mysqli_connect($server, $user, $pass, $database)
 or die("Verbindung konnte nicht hergestellt werden.");

Lizenziert für ComCave College GmbH

 13 Grundlagen Datenbank MySQL

 228 © HERDT‐Verlag

 if (!mysqli_set_charset($verbindung, "utf8")) {
 printf("Error loading character set utf8: %s\n",
 mysqli_error($verbindung));
 }

 $sql = "INSERT INTO bestellung(vorname, nachname, ort, sorte,
 menge)";
 $sql .= " VALUES ('$vorname', '$nachname', '$ort', '$sorte',
 $menge)";

 $abfrage = mysqli_query($verbindung, $sql);
 if ($abfrage) {
 echo "<p>Vielen Dank, Ihre Bestellung wurde
 gespeichert.</p>";
 } else {
 echo "<p>Die SQL-Anweisung ist fehlgeschlagen.</p>";
 }

 Die Variablen $vorname, $nachname, $ort, $sorte und $menge werden mit den

Daten aus dem Formular gefüllt.

 Die Verbindung zum Datenbankserver wird hergestellt und die entsprechende Datenbank
ausgewählt.

 Damit die Daten im richtigen Zeichensatz an die Datenbank übergeben werden, setzen Sie
den UTF8‐Zeichensatz. Diese Einstellung ist notwendig, auch wenn die HTML‐Datei mit dem

UTF8‐Zeichensatz abgespeichert wurde.

 Die SQL‐Anweisung zum Eintrag der übermittelten Werte in die Tabelle bestellung wird
definiert. Die Felder müssen nach dem Tabellennamen angegeben werden, da in der Tabelle

sechs Felder existieren, aber nur fünf Werte übergeben werden. Das Feld id ist vom Typ

auto_increment und wird automatisch hochgezählt.

 Die Abfrage wird ausgeführt. Anschließend wird eine Fehler‐ oder Erfolgsmeldung
ausgegeben.

 Wissenstest: Arrays bis Sessions

13.10 Übung

Einen Newsletter abonnieren

Level

Zeit ca.30 min

Übungsinhalte  HTML‐Formulare

 Datenbankverbindungen mit der PHP‐Erweiterung mysqli

 Daten in Datenbanken schreiben

Übungsdatei ‐‐

Ergebnisdateien newsletter.html, newsletter.php,

MySQL‐Dump homepage‐newsletter.sql

Lizenziert für ComCave College GmbH

Grundlagen Datenbank MySQL 13

 © HERDT‐Verlag 229

1. Auf vielen Webseiten können Benutzer ihren Namen und E‐Mail‐Adresse hinterlassen,
um einen Newsletter zu erhalten. Erstellen Sie eine Webseite, auf der die Besucher der
Webseite Ihren Newsletter bestellen können.

2. Erstellen Sie mithilfe von phpMyAdmin eine neue MySQL‐Datenbank mit dem Namen
homepage.

3. Erzeugen Sie in dieser Datenbank die Tabelle newsletter. Die Tabelle soll folgende zwei
Felder enthalten:

Feldname Feldtyp Null Unique

UserName varchar(50) null

UserMail varchar(50) not null x

Alternativ können Sie die Import‐Datei homepage‐newsletter.sql verwenden, um Datenbank
und Tabelle zu erstellen.

4. Die Anmeldung für den Newsletter
geschieht über ein HTML‐Formular,
das Sie – wie nebenstehend
angezeigt – aufbauen können.

5. Die Daten des Formulars sollen an
das PHP‐Skript newsletter.php
übergeben werden.

6. Erstellen Sie das PHP‐Skript
newsletter.php, das die Daten des
HTML‐Formulars auswertet.
Aufgabe des PHP‐Skripts ist es, den
Namen und die E‐Mail‐Adresse des
Besuchers in die Tabelle newsletter
der Datenbank homepage
einzutragen.

7. Überprüfen Sie, ob der Benutzer eine E‐Mail‐Adresse angegeben hat. Wenn das Feld keinen
Eintrag hat, soll der Benutzer eine Meldung und einen Link erhalten, mit dem er zum Formu‐
lar zurücknavigieren kann.

8. Der Versuch, eine E‐Mail‐Adresse mehrfach einzutragen, schlägt fehl, da das E‐Mail‐Feld
als unique deklariert wurde. Lassen Sie für diesen Fall mithilfe der Funktion

mysqli_error() eine entsprechende Fehlermeldung ausgeben.

9. Nachdem die Daten an die
Tabelle newsletter übergeben
wurden, soll eine Meldung
erscheinen, z. B. Die E‐Mail‐
Adresse arndt@hoffmann.pc
wurde gespeichert.

Anzeige der Formulardatei „newsletter.html“

Bestätigungsseite nach erfolgreichem Eintrag

Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 230 © HERDT‐Verlag

A
1. Installation und Konfiguration der

Software

A.1 Installation und Konfiguration von XAMPP

Was ist XAMPP?
XAMPP ist ein Projekt der Apache Friends, das als Softwarebundle mit einer einfachen Installations‐
routine auf einem „x‐beliebigen“ internetfähigen Betriebssystem den Apache‐Webserver, MariaDB,
PHP und Perl lokal installiert. Vor allem für unerfahrene Benutzer ist es sehr zu empfehlen, sich
nicht durch die teilweise komplexe und schwierige Installation und Konfiguration der Einzel‐
komponenten zu kämpfen. Aber auch fortgeschrittene Programmierer schätzen durchaus die fast
automatische Installation innerhalb weniger Minuten.

Kostenloser Download des bereits konfigurierten Webservers:
https://www.apachefriends.org/download.html
Die für das Buch notwendige XAMPP‐Version 7.0.5 mit der PHP‐7.0.5‐Version steht aktuell für
drei Betriebssysteme zur Verfügung:

 für Windows  für Linux‐Systeme  für Mac OS X

Alternative für Mac‐Nutzer

Download MAMP: http://www.mamp.info/de/

Alternativ zu XAMPP können Sie auch MAMP (My Apache – MySQL – PHP) 3.5 verwenden, welches
von der appsolute GmbH angeboten wird. Dieser vorkonfigurierte und einfach zu installierende
Webserver stand früher nur Mac‐Benutzern zur Verfügung. Seit Anfang 2014 ist MAMP auch für
Windows verfügbar. In der Mac‐Version ist PHP 5.5.9 enthalten, PHP 7.0.0 kann separat
heruntergeladen und eingebunden werden. Die Windows‐Version 3.2.1 wird mit PHP 5.6.0
ausgeliefert und beinhaltet zusätzlich die Komponente PHP 7.0.5. MAMP steht zusätzlich in einer
kostenpflichtigen Version (MAMP PRO) zur Verfügung.

Alle PHP‐Skripte und Beispiele in diesem Buch sind auf dem XAMPP‐Webserver umgesetzt und
getestet worden. Es werden alle Komponenten (Apache, PHP und MariaDB) bis auf die Sprache Perl
verwendet. Die Beispiele sind in einer Windows‐10‐Umgebung entwickelt worden, daher wird auch
für die Installation der Einsatz von XAMPP und Konfiguration Windows beispielhaft herangezogen.

Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 231

Bei der Erstellung dieses Buchs wurde mit der XAMPP‐Version 7.0.5 vom 21. April 2016 gearbeitet.
Das Softwarebundle umfasst die für das Buch relevanten Komponenten in folgenden Versionen:

 PHP, Version 7.0.5  MariaDB, Version 10.1.13

 Apache Webserver, Version 2.4.18  phpMyAdmin, Version 4.5.1

Installiert wurde das in der Abbildung gezeigte XAMPP 7.0.5 unter dem Betriebssystem Windows
10 Home und den Standardeinstellungen für alle Programme.

Download von XAMPP
Auf der Startseite von
https://www.apachefriends.org
finden Sie Download‐Links der
Installer‐Versionen für die unter‐
schiedlichen Betriebssysteme.

Weitere XAMPP‐Versionen stehen auf der Download‐Seite:
https://www.apachefriends.org/download.html zur Verfügung. Dort finden Sie Versionen sowohl
für Windows, Linux als auch für Mac OS X.

 Laden Sie von der angegebenen Internetadresse das aktuelle XAMPP‐Paket herunter.

Installation von XAMPP
Der XAMPP‐Installationsassistent ist so voreingestellt, dass Sie für eine Standardinstallation keine
Einstellungen verändern müssen.

 Um XAMPP 7.0.5 zu installieren, folgen Sie den Schritten des Installationsassistenten.

 Falls Sie eine Firewall installiert oder die Windows Benutzerkontensteuerung aktiviert
haben, erscheinen zu Beginn der Installation Warnhinweise. Bestätigen Sie diese mit OK.
Falls Sie als Mac‐Nutzer ein Passwort für den root‐Nutzer verwenden, kann die Installation
nur nach Eingabe des Passwortes gestartet werden.

 Klicken Sie in allen Dialogen die Schaltfläche Next, um die Installation durchzuführen.

 Wählen Sie die Module von XAMPP
aus, die Sie installieren möchten
(Windows). Wählen Sie mindestens
PHP, MySQL und phpMyAdmin aus. Die
anderen Module sind optional und für
das Arbeiten mit diesem Buch nicht
notwendig. Unter Mac OS ist die
Auswahl reduziert, hier wählen Sie
mindestens die XAMPP Core Files aus.

 Falls Sie XAMPP nicht in dem vorein‐
gestellten Verzeichnis C:\xampp
installieren möchten, wählen Sie ein
anderes Verzeichnis aus (gilt für
Windows). Eine Auswahl des
Installationspfads unter Mac OS ist
nicht möglich.

Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 232 © HERDT‐Verlag

 Nach Abschluss der Installation ist die Checkbox Do you want to start the Control Panel now?
ausgewählt. Lassen Sie diese ausgewählt, klicken Sie Finish, um die Installation
abzuschließen und gleichzeitig das Control Panel zu öffnen (vgl. nächsten Abschnitt).

 Mac‐Nutzer erhalten einen anderen Dialog mit der Option Launch XAMPP. Über die
Schaltfläche Finish schließen Sie die Installation ab und starten den Apache Webserver.

Wenn Sie bei der Installation die Standardeinstellungen beibehalten, werden folgende
Einstellungen vorgenommen:

 Die Installation erfolgt unter Windows standardmäßig in das Verzeichnis C:\xampp.

 Unter Mac OS erfolgt die Installation im Verzeichnis /Applications/XAMPP.

Sollten Sie mit einer anderen XAMPP‐Version arbeiten, können die Schritte während der
Installation, die Einstellmöglichkeiten und die Bezeichnungen der Schaltflächen von dieser
Beschreibung abweichen. Bei allen Installationsassistenten in der Vergangenheit waren die
Standardeinstellungen jedoch stets sinnvoll voreingestellt, so dass auch bei anderen Versionen
keine speziellen Einstellungen vorgenommen werden müssen.

Die Installation des MAMP‐Webservers ist vergleichbar. Folgen Sie den Anweisungen während der
Installation oder lesen Sie das Benutzerhandbuch, welches unter
http://www.mamp.info/de/dokumentation/MAMP‐3‐Benutzerhandbuch.pdf zum Download zur
Verfügung steht.

Probleme bei der Installation von XAMPP

Durch die einfache und automatische Installation von XAMPP sind Probleme bei der Installation
recht selten. Die häufigsten Probleme bereiten folgende Bereiche:

 Berechtigungen: Der Benutzer, der XAMPP installieren möchte, verfügt nicht über

ausreichende Berechtigung für diese Softwareinstallation. Installieren Sie gegebenenfalls
XAMPP als Administrator.

 Unter Windows kann die Benutzerkontensteuerung (User Account Control, UAC) die
Installation verhindern. Eine Lösung für dieses Problem ist, die Benutzerkontensteuerung zu
deaktivieren. Eine andere ist, den Standardinstallationspfad C:\xampp zu verändern und die
XAMPP‐Installation in einem eigenen Benutzerverzeichnis zu installieren, beispielweise in
den eigenen Dokumenten.

 Belegter Port 80. Standardmäßig wird der XAMPP‐Webserver unter dem Port 80 installiert.
Unter Windows 10 belegt mitunter der WWW‐Publishingdienst den Port 80. Das Problem
kann gelöst werden, in dem Sie den Starttyp dieses Dienstes von Auto auf Manuell umstellen
(Systemsteuerung ‐> System und Sicherheit ‐> Verwaltung ‐> Dienste). Ebenfalls belegt Skype
unter Umständen den Port 80. Auch in diesem Fall wird nach der Installation von XAMPP der
Start des Webservers verhindert. Hierzu deaktivieren Sie die Option Skype beim Windows‐
Start ausführen. Diese finden Sie unter Aktionen ‐> Optionen… ‐> Allgemeine Einstellungen.
Nachdem Sie diese Einstellungen vorgenommen und den Rechner neu gestartet haben,
steht der Port 80 für XAMPP zur Verfügung.

 MySQL ist bereits installiert: Andere Software installiert mitunter einen eigenen MySQL‐
Server. Das kann bei der Installation von XAMPP zu Problemen zwischen den beiden
vorhandenen Instanzen des Servers führen. In der Regel hilft die Deinstallation des ersten
MySQL‐Servers, damit XAMPP keinen bereits installierten MySQL‐Server vorfindet.

Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 233

 Installation einer alten XAMPP‐Version: Das Passwort für den MySQL‐SuperUser kann in
einem Cookie gespeichert werden. Auch bei einer vollständigen Neuinstallation von XAMPP
bleibt das Cookie im Browser erhalten, was eine Zugriffsverweigerung von phpMyAdmin auf
die Datenbank zur Folge haben kann. Hier hilft das Löschen des Cookies oder der Wechsel
der phpMyAdmin‐Authentifikation von cookie auf http. Damit wird das Cookie nicht mehr
abgefragt.

Weitere Hilfen zu Fragen und Problemen rund um die Installation und den Betrieb von XAMPP
finden Sie im Internet unter den folgenden Adressen:

 Windows FAQ: https://www.apachefriends.org/faq_windows.html,

 Linux FAQ: https://www.apachefriends.org/faq_linux.html,

 Mac OS X FAQ: https://www.apachefriends.org/faq_osx.html.

A.2 Mit XAMPP arbeiten

Das XAMPP Control Panel (Windows)

Das XAMPP Control Panel ist die Schaltzentrale zur Steuerung der einzelnen Komponenten. Stan‐
dardmäßig wird beim Abschluss der Installation angeboten, das XAMPP Control Panel zu starten.

Verwenden Sie diese Applikation in erster Linie dazu, den Betrieb der einzelnen Komponenten zu
steuern und zu überprüfen. Der Apache Webserver (einschließlich dem PHP‐Interpreter) als auch
der MySQL‐Server müssen gestartet sein, damit PHP‐Skripte überhaupt geparst werden und
Datenbankzugriffe möglich sind.

Welchen Status die
Komponenten haben,
erkennen Sie daran, ob die
jeweilige Schaltfläche Start
oder Stop anzeigt . Über
diese Schaltflächen starten
und stoppen Sie die Kompo‐
nenten. Zusätzlich erkennen
Sie die aktivierte Komponente
an der grünen Hinterlegung
des Modulnamens .

Sollen Apache‐Webserver und MySQL‐Server beim Hochfahren des Rechners automatisch
gestartet werden, können Sie die Checkbox vor dem Modulnamen aktivieren . Dazu muss die
jeweilige Komponente gestoppt werden, falls sie gerade aktiv ist. Mit der Auswahl der Checkbox
wird die Komponente als Dienst installiert und startet dann automatisch beim Computerstart.
Sollten die Checkboxen nicht bedienbar sein, haben Sie keine Zugriffsrechte. In dem Fall melden
Sie sich als Administrator an und nehmen dann die gewünschte Einstellung vor. Dies muss nur
einmal getan werden. Sind die Dienste einmal eingerichtet, starten die Server beim Windowsstart
auch für normale Windows‐Nutzer. Diese Einstellung ist sinnvoll, da Sie nicht jedes Mal die
beiden Server manuell starten müssen.



Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 234 © HERDT‐Verlag

manager‐osx unter Mac OS

Vergleichbar zum XAMPP Control
Panel für Windows steuern Sie den
Apache Webserver sowie den MySQL‐
Datenbankserver über das manager‐
osx‐Programm. Dieses finden Sie
unter Programme ‐> XAMPP ‐>
xamppfiles ‐> manager‐osx. Öffnen Sie
das Programm und wechseln zum
Register Manage Servers. Wählen Sie
die einzelnen Einträge aus und
bestätigen die Schaltfläche Start.
Grüne Symbole vor den einzelnen
Server‐Einträgen zeigen an, dass der
entsprechende Server gestartet ist.

Falls bei der Installation die aktivierte Checkbox Launch XAMPP beibehalten wurde, läuft der
Apache Webserver bereits, Sie müssen nur die MySQL‐Datenbank starten. Auch hierzu benötigen
Sie Administrationsrechte auf dem Mac. Ggf. müssen Sie den Rechner einmal neu starten, sollten
die Server nicht zu starten sein.

Webserver testen

Jeder Webserver im Internet ist über einen eindeutigen Domain‐Namen zu erreichen, beispiels‐
weise http://www.google.de. Genauso verhält es sich mit dem lokalen Webserver.

Sie rufen den lokalen Webserver über die Adresse http://localhost oder alternativ über die IP‐
Adresse http://127.0.0.1 auf. Sie können zudem auch den Namen des Rechners in der
Netzwerkumgebung angeben.

 Starten Sie Ihren Browser.

 Geben Sie in der Adresszeile http://127.0.0.1 oder http://localhost ein.

Bei erfolgreicher Installation und gestartetem Webserver erscheint die Startseite des installierten
XAMPP.



 

Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 235

In der Navigation auf der Startseite von XAMPP sind die häufig genutzten Funktionen als Links
angegeben. Sie können unter anderem …

 die Konfiguration von PHP per phpinfo() abrufen ,

 phpMyAdmin zur Steuerung des lokalen MySQL‐Servers aufrufen .

 Mit der 7er Version haben die Apachefriends die Startseite reduziert. Die Anzeige ist
moderner, viele überflüssige „Spielereien“ von früher, die mit dem Webserver an sich nichts
zu tun hatten, wurden entfernt. Falls Sie eine ältere Version des XAMPP‐Servers installieren,
finden Sie die alte Startseite  vor.

Speicherort für PHP‐Dateien

Der Ordner für alle Webdokumente, das sogenannte root directory, lautet bei einer Standard‐
installation unter Windows C:\xampp\htdocs, unter Mac OS finden Sie den entsprechenden
Ordner unter Programme ‐ XAMPP ‐ xamppfiles ‐ htdocs. Alle Dokumente, die sich in diesem
Ordner befinden, können Sie im Browser bei gestartetem Apache‐Webserver unter der Adresse
http://localhost/<Dateiname> aufrufen.

Noch einfacher ist es, im Ordner C:\xampp\htdocs einen Unterordner zu erstellen, z. B. myphp, der
all Ihre PHP‐Dateien wie die Beispielskripte dieses Buches enthält. Dann können Sie mit der Adresse
http://localhost/myphp den Ordnerinhalt auflisten und müssen die gewünschte Datei zur Anzeige
nur noch anklicken.

A.3 Installation und Konfiguration von Notepad++

Arbeiten mit einem Texteditor

Um ein PHP‐Skript zu schreiben, wie Sie es beispielsweise von HTML kennen, benötigen Sie einen
Texteditor. Ein Editor ist eine Software zur Bearbeitung von ASCII‐Texten und kann daher zur
Eingabe von PHP‐Code verwendet werden. Texteditoren sind auf allen Computer‐Plattformen
verfügbar und besitzen unterschiedliche Funktionsausstattungen. Ein Editor unterscheidet sich
von einer Textverarbeitung oder einem Layout‐Programm dadurch, dass er keine – normaler‐
weise unsichtbaren – Formatierungsanweisungen in den Text einfügt, um ihn in Absätze, Listen,
Tabellen usw. zu gliedern.

PHP‐Editor einsetzen

Im Internet finden Sie auch spezielle PHP‐Editoren, die eine Hervorhebung der Befehle und
Hilfestellungen für verschiedene Sprachelemente bieten und Sie somit beim Erstellen Ihrer
Webseiten visuell unterstützen.

Bei der Erstellung des vorliegenden Buchs wurde mit dem Texteditor Notepad++, Version 6.9.1,
(http://notepad‐plus‐plus.org/download/) gearbeitet. Der Texteditor Notepad++ ist ein einfach zu
bedienender Editor, der viele Programmiersprachen unter Windows unterstützt.

Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 236 © HERDT‐Verlag

Download und Installation von Notepad++

 Laden Sie das Programm Notepad++ von der Webseite http://notepad‐plus‐
plus.org/download/ herunter.

 Um Notepad++ zu installieren, folgen Sie den Schritten des Installationsassistenten.

 Starten Sie nach erfolgreicher Installation das Programm.

Notepad++ wird bei einer 32‐Bit‐
Windows‐Version standardmäßig in den
Ordner C:\ Program Files\Notepad++
installiert, bei einer 64‐Bit‐Version in
den Ordner C:\ Program Files
(x86)\Notepad++. Der Editor ist ohne
weitere Konfiguration sofort für die
Arbeit mit PHP‐Skripten einsatzbereit.

Über das Menü Einstellungen ‐
Optionen haben Sie die Möglichkeit,
den Editor bei Bedarf Ihren persön‐
lichen Vorstellungen anzupassen, z. B.
können Sie PHP als Standardsprache
einstellen oder das Farbschema zur
Anzeige von PHP‐Code ändern.

Seit PHP 5.4 ist der Standard‐Zeichensatz auf UTF-8 gesetzt. Dies
erleichtert den Umgang mit deutschen Sonderzeichen. UTF-8
unterstützt Umlaute und das ß, sodass diese im Quelltext nicht
mehr als HTML‐Entities angegeben werden müssen. Stellen Sie

sicher, dass die Datei mit dem UTF-8‐Zeichensatz gespeichert
wird. Diese Einstellung finden Sie in Notepad++ unter dem
Menüpunkt Kodierung.

Alternative für Mac‐Nutzer

Notepad++ steht nur für Windows zur Verfügung. Für Mac‐Nutzer ist der Editor Sublime Text
verfügbar (http://www.sublimetext.com/). Beachten Sie die Installationshinweise auf der Webseite.

Notepad++: Ansicht mit geöffnetem PHP‐Skript

Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 237

A.4 Mit den XAMPP‐Konfigurationsdateien arbeiten

Auf die Konfigurationsdateien von XAMPP zugreifen

Im XAMPP werden alle Einstellungen klassisch über Konfigurationsdateien verändert.
Standardmäßig werden die Dateien bei der Installation von XAMPP wie folgt abgelegt:

Konfigurationsdatei
(Auswahl der
wichtigsten
Komponenten)

Verzeichnis

(Windows)

Verzeichnis (Mac)

PHP: php.ini C:\xampp\php /Applications/XAMPP/xamppfiles/etc

Apache: httpd.conf C:\xampp\apache\conf\ /Applications/XAMPP/xamppfiles/etc

MariaDB: my.ini
(my.cnf unter Mac)

C:\xampp\mysql\bin\ /Applications/XAMPP/xamppfiles/etc

phpMyAdmin:
config.inc.php

C:\xampp\phpMyAdmin\ /Applications/XAMPP/xamppfiles/phpmyadmin

PHP‐Konfigurationsdatei php.ini

Änderungen an der Konfigurationsdatei php.ini sind Ihnen als Kunde eines Internetproviders in
der Regel nicht möglich. Bei einer lokalen Installation haben Sie hingegen Zugriff auf diese Datei.
Zum tieferen Verständnis der Konfigurationsmöglichkeiten ist die Kenntnis der Datei php.ini von
Vorteil.

Den Pfad zur Konfigurationsdatei erfahren Sie mithilfe der PHP‐Funktion phpinfo(). Dort
finden Sie einen entsprechenden Eintrag unter Loaded Configuration File.

Der folgende Code zeigt einen Ausschnitt aus der php.ini. Zeilen, die mit einem Semikolon
beginnen, sind Kommentarzeilen und werden beim Starten des Webservers ignoriert. In der
php.ini selbst finden Sie Beschreibungen bzw. Erläuterungen der jeweiligen Einstellung auf
Englisch. Durch das Löschen eines Semikolons können Sie die jeweilige Einstellung aktivieren.

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

; Maximum execution time of each script, in seconds
; http://php.net/max-execution-time
; Note: This directive is hardcoded to 0 for the CLI SAPI
max_execution_time=30

; Maximum amount of time each script may spend parsing request data.
It's a good
; idea to limit this time on productions servers in order to
eliminate unexpectedly
; long running scripts.
; Note: This directive is hardcoded to -1 for the CLI SAPI
; Default Value: -1 (Unlimited)

Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 238 © HERDT‐Verlag

; Development Value: 60 (60 seconds)
; Production Value: 60 (60 seconds)
; http://php.net/max-input-time
max_input_time=60

; Maximum input variable nesting level
; http://php.net/max-input-nesting-level
; max_input_nesting_level = 64

; How many GET/POST/COOKIE input variables may be accepted
; max_input_vars = 1000

; Maximum amount of memory a script may consume (128MB)
; http://php.net/memory-limit
memory_limit=128M

Über die php.ini wird das komplette Verhalten des PHP‐Interpreters gesteuert. Hier u. a. der

Eintrag max_execution_time, welcher die maximale Laufzeit eines PHP‐Skripts definiert.

Erst nach Neustart des Webservers liest der PHP‐Interpreter die Einstellungen erneut aus und
verwendet sie.

Wichtige Einträge in der php.ini

Eintrag Wirkung

display_errors =
On/Off

Schaltet die Fehlermeldungen an/aus

allow_url_fopen =
On/Off

Erlaubt/verbietet, dass eine URL wie eine Datei aufgerufen
werden kann

session.save_path =
"c:/xampp/tmp"

Legt den Speicherort für die Session‐Datei fest

session.name =
PHPSESSID

Gibt den Standardnamen der Session an

post_max_size Bestimmt, welche Dateimenge über ein POST‐Formular vom
Server angenommen wird

max_execution_time Maximale Ausführungsdauer eines PHP‐Skripts. Per Standard wird
ein PHP‐Skript nach 30 Sekunden vom Webserver beendet (es
bricht ab). Kann erhöht werden, wenn ein Skript länger zur
Ausführung benötigt.

memory_limit Bestimmt, wieviel Arbeitsspeicher ein PHP‐Skript verwenden darf.
Werden mehr Daten verarbeitet, bricht ein Skript ebenfalls ab.
Kann für speicherintensive Skripte verändert werden. Zum
Beispiel bei Zugriff auf viele Datenbankdaten oder bei der Bild‐
generierung von PHP.

Einen Überblick verschiedener Einstellungen der php.ini finden Sie unter
http://php.net/manual/de/ini.core.php.

Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 239

A.5 Zugriffsrechte von MySQL mit phpMyAdmin steuern

Das Berechtigungssystem von MySQL

Das MySQL‐Berechtigungssystem steuert den Zugriff von Benutzern auf den MySQL‐Server,
MySQL‐Datenbanken und die darin enthaltenen Tabellen und Felder.

Folgende Benutzerrechte können festgelegt werden:

 globale Zugriffsrechte, um den Zugriff auf den MySQL‐Server und die Datenbanken auf

diesem zu regeln;

 Zugriffsrechte auf Datenbankebene, um den Zugriff auf eine bestimmte Datenbank und
deren Tabellen festzulegen;

 Tabellenzugriffsrechte zur Steuerung des Zugriffs auf eine Tabelle und deren Spalten;

 Spaltenzugriffsrechte, um den Zugriff auf eine bestimmte Spalte festzulegen.

Die verschiedenen Zugriffsrechte für Benutzer werden in der Datenbank mysql gespeichert.

Die Datenbank mysql

Standardmäßig werden mit der Datenbank mysql die Benutzerkonten und die Zugriffsrechte
verwaltet.

Der automatisch bei der Installation des MySQL‐Servers eingerichtete Benutzer root hat
uneingeschränkten Zugriff auf den MySQL‐Server und somit auch auf die Datenbank mysql.

Vergeben Sie für den Benutzer root ein Kennwort, sodass über den Benutzer root nur
berechtigte Personen Schreibzugriffe auf die Tabellen dieser Datenbank erhalten.

Verwenden Sie beim Einsatz im Internet einen anderen User mit einem sicheren Kennwort
und angepassten Nutzerrechten.

Das Anlegen und Verwalten von Benutzern ist in Abschnitt 13.6 beschrieben.



Lizenziert für ComCave College GmbH

 A Installation und Konfiguration der Software

 240 © HERDT‐Verlag

A.6 Globale Zugriffsrechte des MySQL‐Administrators
root ändern

Der MySQL‐ bzw. MariaDB‐Server startet ohne Passwort für den MySQL‐Administrator root. Ein
Passwort für root können Sie in phpMyAdmin wie folgt vergeben:

 Um die Zugriffsrechte des Benutzers root
auf dem Host localhost zu ändern, klicken
Sie in der Ansicht Benutzerkonten auf den
Hyperlink Rechte ändern. Mit dem Klick
öffnet sich ein neues Fenster mit verschie‐
denen Formularen zur Rechteverwaltung.

 Wechseln Sie über die obere Schaltfläche
Passwort ändern zum entsprechenden
Formular. Wählen Sie das Optionsfeld
Passwort  aus und vergeben Sie ein
Kennwort.

Nachdem Sie das Passwort gespeichert
haben und dann phpMyAdmin erneut
aufrufen möchten, erhalten Sie eine
Fehlermeldung. Das liegt daran, dass in
der Konfiguration des phpMyAdmin das
Passwort für den Nutzer root und den
Datenbankzugriff hinterlegt ist, welches
Sie gerade geändert haben. Aus dem
Grund muss das neue Passwort für
root in der Konfiguration des
phpMyAdmin eingetragen werden, um
wieder Zugriff zu erhalten. Dies
geschieht über die Konfigurationsdatei,
in der die nachfolgenden Änderungen
vorzunehmen sind:

 Öffnen Sie die Konfigurationsdatei C:\xampp\phpMyAdmin\config.inc.php (Windows) bzw.

unter /Applications/XAMPP/xamppfiles/phpmyadmin/config.inc.php (Mac OS).

 Editieren Sie die angegebenen Zeilen und ändern Sie sie wie folgt:

$cfg['Servers'][$i]['auth_type'] = 'http';
$cfg['Servers'][$i]['user'] = 'root';
$cfg['Servers'][$i]['password'] = ''; // hier wird das neue Passwort

eingetragen

Sobald Sie sich erneut über phpMyAdmin anmelden wollen, erhalten Sie eine Kennwortabfrage.
Dieses Kennwort gilt auch, wenn Sie sich per PHP mit der Datenbank verbinden möchten.





Lizenziert für ComCave College GmbH

Installation und Konfiguration der Software A

 © HERDT‐Verlag 241

Sonstige globale Zugriffsrechte des Benutzers root verändern

 Bei Bedarf ändern Sie die Zugriffsrechte entsprechend der folgenden Tabelle:

Die Angaben gelten auch für alle anderen Benutzer. In der folgenden Tabelle finden Sie eine
Beschreibung der Rechte für den Benutzer:

Zugriffsrecht Beschreibung

Bereich Daten

SELECT Das Recht, die SELECT‐Anweisung auszuführen, um ausgewählte
Datenfelder aus Tabellen abzufragen

INSERT Die SQL‐Anweisung INSERT darf ausgeführt werden, um neue
Datensätze in eine Tabelle einzufügen.

UPDATE Die SQL‐Anweisung UPDATE darf ausgeführt werden, um Daten zu
bearbeiten und zu ändern.

DELETE Diese Angabe gewährt das Recht zum Löschen von Daten.

FILE Der Zugriff auf das lokale Dateisystem des Rechners mit dem MySQL‐
Server wird gestattet.

Bereich Struktur

CREATE Das Recht, Datenbanken und Tabellen zu erstellen

ALTER Das Recht zum Ändern der Tabellenstruktur mit der SQL‐Anweisung
ALTER

INDEX Das Recht, Indizes in Tabellen zu erstellen und zu löschen

DROP Das Recht, Datenbanken und Tabellen zu löschen

Bereich Administration

GRANT Das Recht, die gewährten Zugriffsrechte an andere Benutzer
weiterzugeben

PROCESS Das Recht, die Prozessliste einzusehen und Prozesse zu löschen

RELOAD Das Recht zum Ausführen der FLUSH‐Anweisung bzw. der RELOAD‐
Anweisung des Programms Mysqladmin, um damit die Berechtigungs‐
tabelle neu einzulesen

SHUTDOWN Das Recht, den MySQL‐Server mithilfe des Programms Mysqladmin
herunterzufahren

Lizenziert für ComCave College GmbH

 I Index

 242 © HERDT-Verlag

$
$_POST 188
$_REQUEST 95
$_SERVER 104
$_SESSION 186
$GLOBALS 95

.

. 35

.= 35

<
<?php 14, 16

A
Addition 33
AND 54
Anführungszeichen 21
Anweisung 49
Anweisungen, PHP 17
Anweisungsblock 49
Apache 230
Apache, Webserver 6, 231
array 30
Array 71
array() 74
Array, assoziatives 72, 74
Array, Eigenschaften 72
Array, eindimensionales 72
Array, Index 72
Array, Kurzschreibweise 76
Array, mehrdimensionales 72, 81
Array, numerisch indiziertes 72
Array, Schlüssel 72
Array-Typ, passender 87
Aufteilen, Zeichenkette 163
Ausführungsdauer 177
Auswahl, verschachtelte 56
Auto-Inkrement 209

B
Backslash 23
Bedingungen 46
Bedingungen verknüpfen 54
Benutzerkontensteuerung 231
BOM, Byte Order Mark 24
bool 30
boolean 30
break 58, 66

C
Call-by-reference 116
Call-by-value 116
CamelCase-Schreibweise 31

case 58
checkdate() 179
Codieren, Tipps 17
config.inc.php 237
continue 66, 67
count() 164
Counter 143

D
date() 169, 175
Datei einbinden 127
Dateien sperren 142
Dateien überschreiben 139
Dateinamenerweiterung php 14
Dateizeiger 132, 134
Datenausgabe 19
Datenbank mysql 239
Datenbank, Zeichensatz 226
Datenbanken, Oracle 12
Datentyp, automatische

Zuweisung 39
Datentyp, Zeichen 35
Datentypen, numerische 32
Datentypen, PHP 30
Datenübertragung bei

Formularen 91
Datum 167
Datum formatieren 169, 174
Datum, Anpassung an Sprache 172
Datum, deutsch 172
Datum, Formatanweisungen 170, 174
Datumsdifferenz 176
Datumsprüfung 179
default 58
define() 40
Deklaration 32
Dezimalpunkt 33
die() 217, 219
Division 33
do while 64
double 30
do-while-Schleife 62, 64

E
echo 19, 21
Einbinden, Datei 127
else 52
elseif 55
empty() 102
error_reporting() 27
Escape-Sequenzen 21, 159
explode() 163
Exponent 34
Exponent, Basis 34
Exponentialrechnung 34
Externe Dateien lesen 132

Externe Dateien nutzen 131
Externe Dateien öffnen 132
Externe Dateien schließen 132, 135

F
Fallauswahl 58
FALSE 46
fatal error 26
fclose() 135
Fehlerarten: Benachrichtigung 26
Fehlerarten: Fehler 26
Fehlerarten: Warnung 26
Fehlerarten in PHP 26
Fehlersuche 28
Felder, Datentyp 30
Feldvariablen 71
fgets() 134
file() 136
file_get_contents() 137
file_put_contents() 141
Fließkommazahl 30, 32
float 30
flock() 142
floor() 177
fopen() 132
for 65
foreach() 80, 84
foreach-Schleife 79
Formatieren, Zeichenketten 148
Formularauswertung 91
Formulardaten 95
Formulare auswerten 94, 95, 100,

 103, 105
Formulare, Auswertung in

derselben PHP-Datei 104
Formulare, Checkboxen und

Radiobuttons 100
Formulare, Daten eingeben 95
Formulare, Eingabefelder 94
Formulare, mehrere Absende-

Schaltflächen 102
Formulare, PHP 91
for-Schleife 62, 64
for-Schleife, Operatoren 66
fputs() 139, 140
fseek() 143, 144
func_get_args() 120
function 109, 110, 111, 114
function() 109
Funktion 108
Funktion aufrufen 111, 112
Funktion erstellen 109
Funktion, benutzerdefinierte 108
Funktion, call-by-reference 116
Funktion, call-by-value 116
Funktion, optionale Parameter 114
Funktion, Parameter 110, 113

Lizenziert für ComCave College GmbH

 Index I

 © HERDT-Verlag 243

Funktion, return 110
Funktion, Rückgabewert 109, 117
Funktion, vordefinierte 108
Funktionen, variadische 120

G
Ganze Zahlen 30
Ganzzahl 30
GET 91
getdate() 167
GET-Methode 92
gettype() 40
Gleichheitsoperator 47
Gleitkommazahl 32
Gleitkommazahl, Datentyp 30
global 123
Globale Variablen 123
Greenwich-Zeit 175
Gültigkeitsbereich, Variable 123

H
HTML, PHP-Code in 8
htmlentities() 24
HTML-Tags in PHP-Anweisungen 19
HTTP 91, 183
httpd.conf 237
Hypertext Transfer Protocol 91
Hypertext-Übertragungsprotokoll 91

I
Identisch-Operator 47, 156
if 49, 55, 57
if, else 52
if, elseif 55
if, verschachtelt 56
implode() 163
include() 126
include_once() 127
Index 72
Initialisierung 32
Installation 230
integer 30
Internet-Provider 11
isset() 102

K
key 72, 74
Keywords 31
Kommentare 17
Kommentare, einzeilige 18
Kommentare, mehrzeilige 18
Konfigurationsdateien 237
Konkatenation 35
Konstante skalare Ausdrücke 41
Konstanten 40

Konstanten definieren 41
Kontrollstrukturen 46

L
Lesen, externe Dateien 134
list() 85, 86, 189
localhost 16, 234
Logischer Operator 54
Lokale Variablen 123
ltrim() 159

M
manager-osx 234
MariaDB 6, 12, 230
Mehrdimensionale Arrays 81
Modulo 33
Multiplikation 33
my.ini 237
MySQL 12, 231
MySQL, Berechtigungssystem 239
MySQL, Daten exportieren 212
MySQL, Daten importieren 213
mysql, Datenbank 239
MySQL, Datentypen 208
MySQL, SQL-Dump 212
MySQL, Zugriffsrechte 239
MySQL-Datenbank 10
MySQL-Datenbank erzeugen 207
MySQL-Datenbanken 204
mysqli_close() 217
mysqli_connect() 217
mysqli_error() 223
mysqli_fetch_array 224
mysqli_num_rows() 224
mysqli_query() 221
mysqli_select_db() 219
mysqli_set_charset() 226
MySQL-Tabelle erzeugen 207
MySQL-User verwalten 206

N
Newsletter 229
nl2br() 137
Notepad, installieren 235
Notepad++ 6, 235
notice 26
null 30
Null coalescing-Operator 49
number_format() 150
Numerische Datentypen 32

O
object 30
Open-Source-Datenbanksystem 205
Operator, arithmetischer 33

Operator, logischer 54
Operator, relationaler 46
OR 54
Oracle 12

P
parse error 26
PHP, Anweisungen 17
PHP, Befehle einfügen 14
PHP, Definition 7
PHP, Entwicklung 10
PHP, Interpreter 7
PHP, Kommentare 17
PHP, Merkmale 10
PHP, öffnendes Tag 9
PHP, schließendes Tag 9
php.ini 237
PHP-Anweisungen trennen 17
PHP-Code, in HTML einfügen 8
PHP-Editor 235
phpinfo() 15, 16
PHP-Informationsdatei 15
phpMyAdmin 204, 231
phpMyAdmin, Tabelle erstellen 207
phpMyAdmin, User 'root' 240
PHPSESSID 185
PHP-Version anzeigen 16
POST 91
Postdekrement 34
Postinkrement 34
POST-Methode 92
Potenz 33
Potenz-Operator 34
Prädekrement 33, 34
Präinkrement 33
Primärschlüssel 209
print_r() 96, 169, 188
printf() 146

R
readfile() 136
Rechenregeln, mathematische 33
Relationale Operatoren 46
require() 126
require_once() 127
Reservierte Wörter, PHP 31, 110
resource 30
return 110
root 240
rtrim() 159

S
Schleife, for 64
Schleife, foreach 79
Schleife, while 62

Lizenziert für ComCave College GmbH

 I Index

 244 © HERDT-Verlag

Schleifen verwenden 62
Schlüssel 74
Schlüssel, Array 72
Schlüsselwörter, PHP 31
Schreibweise , CamelCase 31
Selektion, switch-Anweisung 58
Session 183
Session fortsetzen 185
Session konfigurieren 184
Session löschen 191
Session starten 185
Session, Daten lesen 189
Session, Daten löschen 191
Session, Name 185
session_destroy 191
session_destroy() 193
session_id() 185
session_name() 185
session_start() 184, 185
Session-Datei 186
Session-Datei anzeigen 189
Session-ID 184
setlocale() 173
Sitzungen 183
Skalare Ausdrücke 40
Spaceship-Operator 48
Splat-Operator 120
SQL 205
SQL-Abfrage senden 221
SQL-Dump 212
sqrt() 113
str_repeat() 159
str_replace() 162
strcasecmp() 158
strchr() 153
strcmp() 158, 159
strftime() 174, 175
string 30
stristr 151
strlen() 156
strpos() 154
strrchr() 153
strrpos() 154
strstr() 151
strtolower() 160
strtotime() 178
strtoupper() 160
strtr() 161
substr() 155, 198
substr_count() 156
Subtraktion 33
Suchen, Zeichen 154
Superglobale Variablen 123
switch 58
switch, break 58
switch, case 58

switch, default 59
switch-case, erweiterte Notation 61

T
Texteditor 235
Throwable Interface 28
time() 175
Tipps zum Codieren 17
trim() 159
TRUE 46

U
ucfirst() 160
ucwords() 160
UNIX-Timestamp 175
unset() 191, 193
UTF-8 23
utf8_encode() 25

V
Value 72
var_dump() 96
Variable, globale 123
Variable, Gültigkeitsbereich 123
Variable, lokale 123
Variable, superglobale 123
Variablen 30
Variablen, Ausgabe von 36
Variablen, Wertzuweisung 32
Variablenname 31
Variadische Funktionen 120
Vergleichsoperatoren 46, 48
Verkettungsoperator . 35
Verschachtelte Auswahl 56
Vorgabewert 115

W
Wahrheitswert, boolscher Wert 30
warning 26
Webserver 230
Webserver testen 234
Webserver, PHP-Unterstützung 10
Wertzuweisung 32
while 62
while-Schleife 62

X
XAMPP 6, 8, 204, 205, 230
XAMPP Control Panel 233
XAMPP Installationsassistent 231
XAMPP, Arbeit mit 233
XAMPP, document root-

Verzeichnis 16
XAMPP, Download 231
XAMPP, Installationsprobleme 232

XAMPP, konfigurieren 237
XAMPP, root directory 235
XML-Schreibweise 14, 15
XOR 54

Z
Zahlen formatieren 150
Zeichenkette 30, 35
Zeichenkette ausgeben 146
Zeichenkette formatieren 146
Zeichenkette modifizieren 159
Zeichenkette suchen 151, 153
Zeichenkette vergleichen 152, 158
Zeichenkette vergrößern 35
Zeichenkette wiederholen 159
Zeichenkette, Datentyp 30
Zeichenkette,

in Feld umwandeln 163
Zeichenkette, Konkatenation 35
Zeichenkette, Länge 156
Zeichenkette,

Länge bestimmen 156
Zeichenkette, Position ermitteln 154
Zeichenkette, Teilstring

bestimmen 155
Zeichenkette, Zeichen

austauschen 161
Zeichenkette, Zeichenfolge

austauschen 161
Zeichenketten, Verketten von 35
Zeichenkettenoperator 35
Zeichensatz 226
Zeichensatz, UTF-8 23
Zeit 167, 175
Zeitspannen berechnen 177
Zeitstempel 175, 177
Zend Engine 11
Zend Technologies Ltd. 10
Zugriffszähler 143
Zuweisungsoperator = 32
Zuweisungsoperatoren 34

Lizenziert für ComCave College GmbH

Impressum

Matchcode: GPHP7

Autor: Stephan Heller

Redaktion: Andrea Weikert

Produziert im HERDT-Digitaldruck

1. Ausgabe, Oktober 2016

HERDT-Verlag für Bildungsmedien GmbH
Am Kümmerling 21-25
55294 Bodenheim
Internet: www.herdt.com
E-Mail: info@herdt.com

© HERDT-Verlag für Bildungsmedien GmbH, Bodenheim

Alle Rechte vorbehalten. Kein Teil des Werkes darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder einem
anderen Verfahren) ohne schriftliche Genehmigung des Verlags reproduziert oder unter Verwendung elektronischer
Systeme verarbeitet, vervielfältigt oder verbreitet werden.

Dieses Buch wurde mit großer Sorgfalt erstellt und geprüft. Trotzdem können Fehler nicht vollkommen ausgeschlossen
werden. Verlag, Herausgeber und Autoren können für fehlerhafte Angaben und deren Folgen weder eine juristische
Verantwortung noch irgendeine Haftung übernehmen.

Wenn nicht explizit an anderer Stelle des Werkes aufgeführt, liegen die Copyrights an allen Screenshots beim HERDT-
Verlag. Sollte es trotz intensiver Recherche nicht gelungen sein, alle weiteren Rechteinhaber der verwendeten
Quellen und Abbildungen zu finden, bitten wir um kurze Nachricht an die Redaktion.

Die in diesem Buch und in den abgebildeten bzw. zum Download angebotenen Dateien genannten Personen und
Organisationen, Adress- und Telekommunikationsangaben, Bankverbindungen etc. sind frei erfunden. Eventuelle
Übereinstimmungen oder Ähnlichkeiten sind unbeabsichtigt und rein zufällig.

Die Bildungsmedien des HERDT-Verlags enthalten Verweise auf Webseiten Dritter. Diese Webseiten unterliegen der
Haftung der jeweiligen Betreiber, wir haben keinerlei Einfluss auf die Gestaltung und die Inhalte dieser Webseiten.
Bei der Bucherstellung haben wir die fremden Inhalte daraufhin überprüft, ob etwaige Rechtsverstöße bestehen.
Zu diesem Zeitpunkt waren keine Rechtsverstöße ersichtlich. Wir werden bei Kenntnis von Rechtsverstößen jedoch
umgehend die entsprechenden Internetadressen aus dem Buch entfernen.

Die in den Bildungsmedien des HERDT-Verlags vorhandenen Internetadressen, Screenshots, Bezeichnungen bzw.
Beschreibungen und Funktionen waren zum Zeitpunkt der Erstellung der jeweiligen Produkte aktuell und gültig.
Sollten Sie die Webseiten nicht mehr unter den angegebenen Adressen finden, sind diese eventuell inzwischen
komplett aus dem Internet genommen worden oder unter einer neuen Adresse zu finden. Sollten im vorliegenden
Produkt vorhandene Screenshots, Bezeichnungen bzw. Beschreibungen und Funktionen nicht mehr der beschriebenen
Software entsprechen, hat der Hersteller der jeweiligen Software nach Drucklegung Änderungen vorgenommen oder
vorhandene Funktionen geändert oder entfernt.

Lizenziert für ComCave College GmbH

	GPHP7_cover
	GPHP7_Universal
	PHP 7.0 – Dynamische - Webseiten erstellen
	I Bevor Sie beginnen
	1 Informationen zu diesem Buch
	1.1 Voraussetzungen und Ziele
	1.2 Aufbau und Konventionen

	2 Einführung in PHP
	2.1 PHP‐Code in Webseiten
	2.2 Informationen zu PHP
	2.3 PHP‐Version

	3 Grundlegende Sprachelemente
	3.1 PHP in HTML einbinden
	3.2 Codieren von PHP‐Skripten
	3.3 Daten im Browser ausgeben
	3.4 Grundlagen zur Fehlersuche in PHP‐Skripten
	3.5 Übung

	4 Variablen und Operatoren
	4.1 Variablen
	4.2 Variablen und Operatoren für Zahlen
	4.3 Variablen und Operatoren für Zeichenketten
	4.4 Konstanten
	4.5 Übungen

	5 Kontrollstrukturen
	5.1 Kontrollstrukturen einsetzen
	5.2 Die einfache if‐Anweisung
	5.3 Die if‐Anweisung mit else‐Zweig
	5.4 Erweiterte if‐Anweisung mit elseif
	5.5 Verschachtelte if‐Anweisungen
	5.6 Fallauswahl mit der switch‐Anweisung
	5.7 Schleifen
	5.8 Mit der while‐Schleife arbeiten
	5.9 Mit der for‐Schleife arbeiten
	5.10 Schleifen abbrechen
	5.11 Übungen

	6 Arrays
	6.1 Grundlagen zu Arrays
	6.2 Indizierte eindimensionale Arrays erstellen
	6.3 Assoziative eindimensionale Arrays erstellen
	6.4 Arrays mit der Kurzschreibweise erstellen
	6.5 Mit eindimensionalen Arrays arbeiten
	6.6 Daten aus eindimensionalen Arrays extrahieren
	6.7 Mehrdimensionale indizierte Arrays erstellen
	6.8 Mit mehrdimensionalen assoziativen Arrays arbeiten
	6.9 Daten aus mehrdimensionalen Arrays extrahieren
	6.10 Den passenden Array‐Typ verwenden
	6.11 Weitere Informationen zu Arrays in PHP
	6.12 Übungen

	7 Mit Formularen arbeiten
	7.1 Interaktion mit PHP
	7.2 Formulare mit PHP auswerten
	7.3 Übungen

	8 Funktionen
	8.1 Funktionen erstellen und aufrufen
	8.2 Mit Funktionen arbeiten
	8.3 Der Gültigkeitsbereich von Variablen
	8.4 PHP‐Dateien einbinden mit include() und require
	8.5 Übungen

	9 Mit Daten aus externen Dateien arbeiten
	9.1 Externe Dateien nutzen
	9.2 Dateien öffnen, lesen und schließen
	9.3 Weitere Möglichkeiten zum Lesen von Dateien
	9.4 In Dateien schreiben
	9.5 Weitere Datei‐Funktionen
	9.6 Zugriffszähler für eine Webseite
	9.7 Übung

	10 Zeichenketten‐Funktionen
	10.1 Zeichenketten ausgeben
	10.2 Zahlen formatieren
	10.3 Nach Zeichenketten suchen
	10.4 Position und Teil einer Zeichenkette ermitteln
	10.5 Zählen innerhalb von Zeichenketten
	10.6 Zeichenketten vergleichen
	10.7 Zeichenketten modifizieren
	10.8 Mit Arrays und Zeichenketten arbeiten
	10.9 Übungen

	11 Datum und Uhrzeit
	11.1 Datum und Zeit ermitteln
	11.2 Datum und Zeit formatieren
	11.3 Datumsangabe an Sprache anpassen
	11.4 Länder‐ und Spracheinstellungen ändern
	11.5 Zeitfunktionen
	11.6 Datumsangaben überprüfen
	11.7 Übungen

	12 Sessions
	12.1 Mit Sessions arbeiten
	12.2 Session starten bzw. fortsetzen
	12.3 Daten in einer Session speichern
	12.4 Daten einer Session abrufen
	12.5 Sessiondaten und Session löschen
	12.6 Fallbeispiel „Shop
	12.7 Übung

	13 Grundlagen Datenbank MySQL
	13.1 Die Datenbanken MySQL und MariaDB
	13.2 MySQL‐Datenbanken mit phpMyAdmin verwalten
	13.3 MySQL‐Datenbanken mit phpMyAdmin erstellen
	13.4 Mit einer MySQL‐Tabelle arbeiten
	13.5 SQL‐Dumps exportieren und importieren
	13.6 PHP und MySQL
	13.7 MySQL‐Abfragen
	13.8 Rückgabe aus MySQL‐Abfrage auswerten
	13.9 Formulardaten in einer MySQL‐Datenbank speichern
	13.10 Übung

	A Installation und Konfiguration der Software
	A.1 Installation und Konfiguration von XAMPP
	A.2 Mit XAMPP arbeiten
	A.3 Installation und Konfiguration von Notepad
	A.4 Mit den XAMPP‐Konfigurationsdateien arbeiten
	A.5 Zugriffsrechte von MySQL mit phpMyAdmin steuern

	Stichwortverzeichnis

